| 1 |
ABEDINPOURSHOTORBAN H, MARIYAM SHAMSUDDIN S, BEHESHTI Z, et al. Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm and Evolutionary Computation, 2016, 26, 8- 22.
doi: 10.1016/j.swevo.2015.07.002
|
| 2 |
ABDEL-BASSET M, MOHAMED R, SALLAM K M, et al. Light spectrum optimizer: a novel physics-inspired metaheuristic optimization algorithm. Mathematics, 2022, 10(19): 3466.
doi: 10.3390/math10193466
|
| 3 |
RANGAIAH G P, FENG Z M, HOADLEY A F. Multi-objective optimization applications in chemical process engineering: tutorial and review. Processes, 2020, 8(5): 508.
doi: 10.3390/pr8050508
|
| 4 |
TAYLOR C J, POMBERGER A, FELTON K C, et al. A brief introduction to chemical reaction optimization. Chemical Reviews, 2023, 123(6): 3089- 3126.
doi: 10.1021/acs.chemrev.2c00798
|
| 5 |
曾耀平, 夏玉婷, 江伟伟, 等. 加权能耗最小化的无人机辅助移动边缘计算策略研究. 计算机工程, 2024, 50(2): 288- 297.
doi: 10.19678/j.issn.1000-3428.0067913
|
|
ZENG Y P, XIA Y T, JIANG W W, et al. Research on UAV-assisted mobile edge computing strategy with weighted energy minimization. Computer Engineering, 2024, 50(2): 288- 297.
doi: 10.19678/j.issn.1000-3428.0067913
|
| 6 |
BISHOP C M. Information science and statistics: pattern recognition and machine learning. 1st ed Berlin, Germany: Springer, 2006.
|
| 7 |
BOTTOU L, CURTIS F E, NOCEDAL J. Optimization methods for large-scale machine learning. SIAM Review, 2018, 60(2): 223- 311.
doi: 10.1137/16M1080173
|
| 8 |
BERTSIMAS D, SHIODA R. Classification and regression via integer optimization. Operations Research, 2007, 55(2): 252- 271.
doi: 10.1287/opre.1060.0360
|
| 9 |
BAGIROV A M, RUBINOV A M, SOUKHOROUKOVA N V, et al. Unsupervised and supervised data classification via nonsmooth and global optimization. Top, 2003, 11(1): 1- 75.
doi: 10.1007/BF02578945
|
| 10 |
TEBOULLE M. A unified continuous optimization framework for center-based clustering methods. Journal of Machine Learning Research, 2007, 8, 65- 102.
|
| 11 |
GAMBELLA C, GHADDAR B, NAOUM-SAWAYA J. Optimization problems for machine learning: a survey. European Journal of Operational Research, 2021, 290(3): 807- 828.
doi: 10.1016/j.ejor.2020.08.045
|
| 12 |
FARRELL M, RECANATESI S, MOORE T, et al. Author correction: gradient-based learning drives robust representations in recurrent neural networks by balancing compression and expansion. Nature Machine Intelligence, 2022, 4(11): 1053.
doi: 10.1038/s42256-022-00565-6
|
| 13 |
ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey. IEEE Signal Processing Magazine, 2017, 34(6): 26- 38.
doi: 10.1109/MSP.2017.2743240
|
| 14 |
|
| 15 |
赵季红, 张富, 崔曌铭. 基于自适应动态预测的网络切片资源冲突优化. 计算机工程, 2024, 50(1): 183- 190.
doi: 10.19678/j.issn.1000-3428.0067985
|
|
ZHAO J H, ZHANG F, CUI Z M. Optimization of resource conflicts in network slicing based on adaptive dynamic prediction. Computer Engineering, 2024, 50(1): 183- 190.
doi: 10.19678/j.issn.1000-3428.0067985
|
| 16 |
|
| 17 |
白祉旭, 王衡军. 基于改进遗传算法的对抗样本生成方法. 计算机工程, 2023, 49(5): 139- 149.
doi: 10.19678/j.issn.1000-3428.0065260
|
|
BAI Z X, WANG H J. Adversarial example generation method based on improved genetic algorithm. Computer Engineering, 2023, 49(5): 139- 149.
doi: 10.19678/j.issn.1000-3428.0065260
|
| 18 |
WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview. Soft Computing, 2018, 22(2): 387- 408.
doi: 10.1007/s00500-016-2474-6
|
| 19 |
|
| 20 |
|
| 21 |
LOCATELLI M. Relaxing the assumptions of the multilevel single linkage algorithm. Journal of Global Optimization, 1998, 13(1): 25- 42.
doi: 10.1023/A:1008246031222
|
| 22 |
DONG H C, SONG B W, DONG Z M, et al. Multi-Start Space Reduction (MSSR) surrogate-based global optimization method. Structural and Multidisciplinary Optimization, 2016, 54(4): 907- 926.
doi: 10.1007/s00158-016-1450-1
|
| 23 |
KRITYAKIERNE T, SHOEMAKER C A. SOMS: SurrOgate MultiStart algorithm for use with nonlinear programming for global optimization. International Transactions in Operational Research, 2017, 24(5): 1139- 1172.
doi: 10.1111/itor.12190
|
| 24 |
ŽILINSKAS A, GILLARD J, SCAMMELL M, et al. Multistart with early termination of descents. Journal of Global Optimization, 2021, 79(2): 447- 462.
doi: 10.1007/s10898-019-00814-w
|
| 25 |
DENG L Y, LIU S Y. A multi-strategy improved slime mould algorithm for global optimization and engineering design problems. Computer Methods in Applied Mechanics and Engineering, 2023, 404, 115764.
doi: 10.1016/j.cma.2022.115764
|
| 26 |
TSOULOS I G, KARVOUNIS E, TZALLAS A. A novel sampling technique for multistart-based methods. SN Computer Science, 2020, 2(1): 7.
|
| 27 |
JAISWAL P, LARSON J. Multistart algorithm for identifying all optima of nonconvex stochastic functions. Optimization Letters, 2024, 18(6): 1335- 1360.
doi: 10.1007/s11590-024-02114-z
|
| 28 |
|