Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (4): 350-359. doi: 10.19678/j.issn.1000-3428.0069059

• Development Research and Engineering Application • Previous Articles     Next Articles

A Highly Efficient Traffic Prediction Model for Continuous Time-series Graph Attention Networks

LIU Yunxiang*(), LIANG Zhichao   

  1. School of Computer Science and Information Engineering, Shanghai institute of technology, Shanghai 201418, China
  • Received:2023-12-20 Online:2025-04-15 Published:2025-04-18
  • Contact: LIU Yunxiang

一种高效的连续时序图注意力网络的交通预测模型

刘云翔*(), 梁智超   

  1. 上海应用技术大学计算机科学与信息工程学院, 上海 201418
  • 通讯作者: 刘云翔

Abstract:

Traffic prediction faces three primary challenges: traditional spatiotemporal modeling methods struggle to capture long-range dependencies effectively, fixed time-window mechanisms cannot adapt to dynamic temporal patterns, and conventional statistical-based models exhibit limitations in modeling complex topological relationships. To address these issues, this study proposes a Temporal-enhanced Efficient Graph Attention Network (T-EGT). First, an Efficient Multi-head Self-Attention (EMSA) mechanism is designed, employing parameter sharing and sparse computation strategies to reduce the computational complexity of attention heads from O(N2) to O(NlogaN). Second, a linear temporal extension module is developed, extending the temporal perception range from fixed K steps to an elastic window of K+Δ through learnable temporal convolution kernels, where Δ∈ serves as an adaptive adjustment parameter. Finally, a dynamic graph inference architecture is constructed by utilizing the neighborhood aggregation characteristics of Graph Neural Networks (GNNs) to automatically generate topological relationship matrixes containing 83 traffic elements at each time step. Experiments on five benchmark datasets, including PeMSD4 and METR-LA, demonstrate that T-EGAT significantly outperforms 16 baseline models (including Diffusion Convolutional Recurrent Neural Network (DCRNN), GraphWaveNet, and Attention Based Spatial-Temporal Graph Convolutional Network (ASTGCN)), achieving a 2.77%-5.97% reduction in Mean Absolute Error (MAE), 3.12%-6.44% improvement in Root Mean Square Error (RMSE), and 1.41%-2.3% decrease in single-step prediction time. Ablation studies quantify the module contributions: EMSA accounts for a 42% accuracy improvement, the temporal extension module reduces long-term prediction errors by 17%, and the dynamic graph generation mechanism enhances the topological modeling accuracy by 29%. The model demonstrates enhanced robustness in sudden traffic accident scenarios, achieving an anomaly detection F1 value of 0.873, indicating a 21.5% improvement over conventional methods. These findings provide a new technical framework for real-time traffic management systems with an elastic temporal modeling mechanism and efficient attention architecture, offering universal solutions for spatiotemporal prediction tasks.

Key words: intelligent traffic, traffic prediction model, Graph Neural Network (GNN), traffic flow, multi-head self-attention mechanism, artificial intelligence decision-making

摘要:

交通预测领域面临传统时空建模方法难以有效捕获长程依赖关系、固定时间窗口机制无法适应动态时序模式以及基于统计学的传统模型在复杂拓扑关系建模方面存在局限性3个主要挑战。针对上述问题, 提出基于连续时序的高效图注意力网络(T-EGAT)。首先设计高效多头自注意力机制(EMSA), 采用参数共享和稀疏计算策略, 将注意力头的计算复杂度从O(N)降低到O(NlogaN); 其次开发线性时序扩展模块, 通过可学习的时序卷积核将时间感知范围从固定K步扩展到K+Δ步的弹性窗口, 其中Δ∈为自适应调整参数; 最后构建动态图推理架构, 利用图神经网络(GNNs)的邻域聚合特性, 在每个时间步自动生成包含83个交通要素的拓扑关系矩阵。实验结果表明, 在PeMSD4、METR-LA等5个基准数据集上, T-EGAT相较16种基线模型(包括DCRNN、GraphWaveNet、ASTGCN等)取得显著提升, 平均绝对误差(MAE)降低了2.77%~5.97%, 均方根误差(RMSE)改善了3.12%~6.44%, 单步预测时间缩短了1.41%~2.3%。消融实验结果表明, EMSA带来42%的精度提升, 时序扩展模块减少了17%的长时预测误差, 动态图生成机制提高了29%的拓扑建模准确率。该模型在突发交通事故场景下表现出更强的鲁棒性, 异常事件检测F1值达到0.873, 较传统方法提升了21.5%。该方案为实时交通管理系统提供了新的技术框架, 其弹性时序建模机制和高效注意力架构为时空预测任务提供了普适性解决方案。

关键词: 智能交通, 交通预测模型, 图神经网络, 交通流, 多头自注意力机制, 人工智能决策