1 |
陆文琦, 芮一康, 冉斌, 等. 智能网联环境下基于混合深度学习的交通流预测模型. 交通运输系统工程与信息, 2020, 20 (3): 47- 53.
|
|
LU W Q , RUI Y K , RAN B , et al. Traffic flow prediction based on hybrid deep learning under connected and automated vehicle environment. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (3): 47- 53.
|
2 |
蒋欣彤, 冯慧芳. 基于时序图卷积网络的交通速度预测. 计算机科学与应用, 2022, 12 (6): 1544- 1552.
|
|
JIANG X T , FENG H F . Traffic speed prediction based on temporal graph convolution network. Computer Science and Application, 2022, 12 (6): 1544- 1552.
|
3 |
王祥雪, 许伦辉. 基于深度学习的短时交通流预测研究. 交通运输系统工程与信息, 2018, 18 (1): 81- 88.
|
|
WANG X X , XU L H . Short-term traffic flow prediction based on deep learning. Journal of Transportation Systems Engineering and Information Technology, 2018, 18 (1): 81- 88.
|
4 |
户佐安, 邓锦程, 韩金丽, 等. 图神经网络在交通预测中的应用综述. 交通运输工程学报, 2023, 23 (5): 39- 61.
|
|
HU Z A , DENG J C , HAN J L , et al. Review on application of graph neural network in traffic prediction. Journal of Traffic and Transportation Engineering, 2023, 23 (5): 39- 61.
|
5 |
李翠锦, 瞿中. 复杂交通环境下多层交叉融合多目标检测. 电讯技术, 2023, 63 (9): 1291- 1299.
|
|
LI C J , QU Z . Multi-layer intersection fusion and multi-target detection in complex traffic environment. Telecommunication Engineering, 2023, 63 (9): 1291- 1299.
|
6 |
XU X Y , LIU J , LI H Y , et al. Analysis of subway station capacity with the use of queueing theory. Transportation Research Part C: Emerging Technologies, 2014, 38, 28- 43.
doi: 10.1016/j.trc.2013.10.010
|
7 |
CASCETTA E . Transportation systems engineering: theory and methods. Berlin, Germany: Springer, 2001.
|
8 |
LI C , XU P . Application on traffic flow prediction of machine learning in intelligent transportation. Neural Computing and Applications, 2021, 33 (2): 613- 624.
doi: 10.1007/s00521-020-05002-6
|
9 |
LIU Q X , SUN S , LIU M , et al. Online spatio-temporal correlation-based federated learning for traffic flow forecasting. IEEE Transactions on Intelligent Transportation Systems, 2023, 25 (10): 13027- 13039.
|
10 |
WU Z H , PAN S R , CHEN F W , et al. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 32 (1): 4- 24.
|
11 |
WELLING M, KIPF T N. Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2016: 356-367.
|
12 |
MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 5115-5124.
|
13 |
LI R Y , WANG S , ZHU F Y , et al. Adaptive graph convolutional neural networks. Artificial Intelligence, 2018, 32 (1): 1156- 1166.
|
14 |
LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. [2023-11-10]. https://arxiv.org/abs/1707.01926v3.
|
15 |
ZHANG J N, SHI X J, XIE J Y, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[EB/OL]. [2023-11-10]. https://arxiv.org/abs/1803.07294v1.
|
16 |
SONG C , LIN Y F , GUO S N , et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. Artificial Intelligence, 2020, 34 (1): 914- 921.
|
17 |
LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. [S. 1. ]: AAAI Press, 2021: 323-335.
|
18 |
GUO S N , LIN Y F , FENG N , et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Artificial Intelligence, 2019, 33 (1): 922- 929.
|
19 |
CHEN Y, SEGOVIA I, GEL Y R. Z-gcnets: time zigzags at graph convolutional networks for time series forecasting[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 1684-1694.
|
20 |
CHOI J , CHOI H , HWANG J , et al. Graph neural controlled differential equations for traffic forecasting. Artificial Intelligence, 2022, 36 (6): 6367- 6374.
|
21 |
DUAN Y J , LV Y S , LIU Y L , et al. An efficient realization of deep learning for traffic data imputation. Transportation Research Part C: Emerging Technologies, 2016, 72, 168- 181.
|
22 |
DISSANAYAKE B, HEMACHANDRA O, LAHSHITHA N, et al. A comparison of arimax, VAR and LSTM on multivariate short-term traffic volume forecasting[C]//Proceedings of International Conference of Open Innovations Association. Washington D. C., USA: IEEE Press, 2021: 564-570.
|
23 |
LEI H , LIU L L X , WANG H . Survey on research and application of support vector machines in intelligent transportation system. Journal of Frontiers of Computer Science & Technology, 2020, 14 (6): 901.
|
24 |
BAI S J, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2023-11-10]. https://arxiv.org/abs/1803.01271v2.
|
25 |
ZHANG K , LIU Z , ZHENG L . Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-task learning. IEEE Transactions on Intelligent Transportation systems, 2019, 21 (4): 1480- 1490.
|
26 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 146-157.
|
27 |
|
28 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of AAAI Technical Track on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 563-572.
|
29 |
ZHAO X , ASKARI H , CHEN J . Nanogenerators for smart cities in the era of 5G and Internet of things. Joule, 2021, 5 (6): 1391- 1431.
|
30 |
FENG A S, TASSIULAS L. Adaptive graph spatial-temporal transformer network for traffic forecasting[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2022: 3933-3937.
|
31 |
LUO X L, ZHU C J, ZHANG D T, et al. Dynamic graph convolutional network with attention fusion for traffic flow prediction[EB/OL]. [2023-11-10]. https://arxiv.org/abs/2302.12598.
|