1 |
马长辉, 黄登山. 纹理与几何特征信息在高空间分辨率遥感影像分类中的应用. 测绘地理信息, 2019, 44 (6): 66-70, 92.
|
|
MA C H , HUANG D S . Application of texture features and geometric feature information in high spatial resolution remote sensing image classification. Journal of Geomatics, 2019, 44 (6): 66-70, 92.
|
2 |
ORHEI C, VERT S, VASIU R. A novel edge detection operator for identifying buildings in augmented reality applications[EB/OL]. [2023-11-18]. https://arxiv.org/abs/2106.01055.
|
3 |
成行. 面向复杂场景的高分辨率遥感影像建筑物语义分割方法[D]. 南京: 南京邮电大学, 2022.
|
|
CHENG H. Semantic segmentation of buildings from high-resolution remote sensing images of complex scenes[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. (in Chinese)
|
4 |
LAI X D , YANG J R , LI Y X , et al. A building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features. Remote Sensing, 2019, 11 (14): 1636.
doi: 10.3390/rs11141636
|
5 |
CHEN L F , CUI X L , LI Z H , et al. A new deep learning algorithm for SAR scene classification based on spatial statistical modeling and features re-calibration. Sensors, 2019, 19 (11): 2479.
doi: 10.3390/s19112479
|
6 |
CHEN L F , TAN S Y , PAN Z H , et al. A new framework for automatic airports extraction from SAR images using multi-level dual attention mechanism. Remote Sensing, 2020, 12 (3): 560.
doi: 10.3390/rs12030560
|
7 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
8 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 15-21.
|
9 |
PENG H X , XUE C , SHAO Y Y , et al. Semantic segmentation of litchi branches using DeepLabV3+ model. IEEE Access, 2020, 8, 164546- 164555.
doi: 10.1109/ACCESS.2020.3021739
|
10 |
金澍, 关沫, 边玉婵, 等. 基于改进U-Net的遥感影像建筑物提取方法. 激光与光电子学进展, 2023, 60 (4): 0401002.
|
|
JIN S , GUAN M , BIAN Y C , et al. Building extraction from remote sensing images based on improved U-Net. Laser & Optoelectronics Progress, 2023, 60 (4): 0401002.
|
11 |
武花, 张新长, 孙颖, 等. 融合多特征改进型PSPNet模型应用于复杂场景下的建筑物提取. 测绘通报, 2021 (6): 21- 27.
|
|
WU H , ZHANG X C , SUN Y , et al. Building extraction in complex scenes based on the fusion of multi-feature improved PSPNet model. Bulletin of Surveying and Mapping, 2021 (6): 21- 27.
|
12 |
于明洋, 张文焯, 陈肖娴, 等. 基于DeepLabv3+的高分辨率遥感影像建筑物自动提取. 测绘工程, 2022, 31 (4): 1-10, 17.
|
|
YU M Y , ZHANG W Z , CHEN X X , et al. Automatic extraction of buildings from high-resolution remote sensing images based on DeepLabv3+. Engineering of Surveying and Mapping, 2022, 31 (4): 1-10, 17.
|
13 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 779-788.
|
14 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 61-67.
|
15 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
16 |
丁飞, 石颉, 吴宏杰. 改进YOLOv4的轻量级遥感图像建筑物检测模型. 计算机工程与应用, 2023, 59 (10): 213- 220.
doi: 10.3778/j.issn.1002-8331.2202-0287
|
|
DING F , SHI J , WU H J . Lightweight building detection model based on YOLOv4 optimization for remote sensing images. Computer Engineering and Applications, 2023, 59 (10): 213- 220.
doi: 10.3778/j.issn.1002-8331.2202-0287
|
17 |
胡舒, 王树根, 王越, 等. 基于Mask R-CNN的高分遥感影像建筑物目标检测. 测绘地理信息, 2023, 48 (3): 50- 54.
|
|
HU S , WANG S G , WANG Y , et al. Building object detection in high-resolution remote sensing image based on Mask R-CNN. Journal of Geomatics, 2023, 48 (3): 50- 54.
|
18 |
李东子, 范大昭, 苏亚龙. 结合Faster R-CNN模型的遥感影像建筑物检测. 测绘科学技术学报, 2018, 35 (4): 389- 394.
|
|
LI D Z , FAN D Z , SU Y L . Building detection in remote sensing image based on faster R-CNN. Journal of Geomatics Science and Technology, 2018, 35 (4): 389- 394.
|
19 |
成浩维, 资文杰, 彭双, 等. 基于半监督学习的三维Mesh建筑物立面提取与语义分割方法. 郑州大学学报(理学版), 2023, 55 (4): 8- 15.
|
|
CHENG H W , ZI W J , PENG S , et al. Semi-supervised learning based 3D Mesh building facade extraction and semantic segmentation method. Journal of Zhengzhou University (Natural Science Edition), 2023, 55 (4): 8- 15.
|
20 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2014: 2672-2680.
|
21 |
刘华超, 张俊然, 刘云飞. 引入特征损失对CycleGAN的影响研究. 计算机工程与应用, 2020, 56 (22): 217- 223.
|
|
LIU H C , ZHANG J R , LIU Y F . Influence of identity loss on CycleGAN. Computer Engineering and Applications, 2020, 56 (22): 217- 223.
|
22 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 2242-2251.
|
23 |
卢鹏, 张娜, 邹国良, 等. 基于双重注意力机制的CycleGAN海岸线自动提取方法. 激光与光电子学进展, 2022, 59 (12): 1210005.
|
|
LU P , ZHANG N , ZOU G L , et al. CycleGAN coastline automatic extraction method based on dual attention mechanism. Laser & Optoelectronics Progress, 2022, 59 (12): 1210005.
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
KIM J, KIM M, KANG H, et al. U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation[EB/OL]. [2023-11-18]. https://arxiv.org/abs/1907.10830v2.
|
29 |
SHAO X N, ZHANG W D. SPatchGAN: a statistical feature based discriminator for unsupervised image-to-image translation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 6546-6555.
|
30 |
HU X Q, ZHOU X Y, HUANG Q S, et al. QS-Attn: query-selected attention for contrastive learning in I2I translation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 18291-18300.
|