1 |
陈云. 基于深度学习的医学影像检测算法[D]. 北京: 北京邮电大学, 2019.
|
|
CHEN Y. Medical image detection algorithm based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
|
2 |
杨毅, 桑庆兵. 多尺度特征自适应融合的轻量化织物瑕疵检测. 计算机工程, 2022, 48 (12): 288- 295.
doi: 10.19678/j.issn.1000-3428.0063507
|
|
YANG Y , SANG Q B . Lightweight-fabric defect detection based on adaptive fusion of multiscale features. Computer Engineering, 2022, 48 (12): 288- 295.
doi: 10.19678/j.issn.1000-3428.0063507
|
3 |
刘浩翰, 孙铖, 贺怀清, 等. 金属表面缺陷检测方法YOLOv3I. 吉林大学学报(理学版), 2023, 51 (3): 450- 458.
|
|
LIU H H , SUN C , HE H Q , et al. Metal surface defect detection method YOLOv3I. Journal of Jilin University (Science Edition), 2023, 51 (3): 450- 458.
|
4 |
赵亚男, 吴黎明, 陈琦. 基于多尺度融合SSD的小目标检测算法. 计算机工程, 2020, 46 (1): 247- 254.
doi: 10.19678/j.issn.1000-3428.0053233
|
|
ZHAO Y N , WU L M , CHEN Q . Small object detection algorithm based on multi-scale fusion SSD. Computer Engineering, 2020, 46 (1): 247- 254.
doi: 10.19678/j.issn.1000-3428.0053233
|
5 |
彭成, 张乔虹, 唐朝晖, 等. 基于YOLOv5增强模型的口罩佩戴检测方法研究. 计算机工程, 2022, 48 (4): 39- 49.
doi: 10.19678/j.issn.1000-3428.0061502
|
|
PENG C , ZHANG Q H , TANG Z H , et al. Research on mask wearing detection method based on YOLOv5 enhancement model. Computer Engineering, 2022, 48 (4): 39- 49.
doi: 10.19678/j.issn.1000-3428.0061502
|
6 |
赵媛媛, 朱军, 谢亚坤, 等. 改进Yolo-v3的视频图像火焰实时检测算法. 武汉大学学报(信息科学版), 2021, 46 (3): 326- 334.
|
|
ZHAO Y Y , ZHU J , XIE Y K , et al. A real-time video flame detection algorithm based on improved Yolo-v3. Geomatics and Information Science of Wuhan University, 2021, 46 (3): 326- 334.
|
7 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
8 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
10 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4203-4212.
|
11 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
12 |
|
13 |
赵文清, 周震东, 翟永杰. 基于反卷积和特征融合的SSD小目标检测算法. 智能系统学报, 2020, 15 (2): 310- 316.
|
|
ZHAO W Q , ZHOU Z D , ZHAI Y J . SSD small target detection algorithm based on deconvolution and feature fusion. CAAI Transactions on Intelligent Systems, 2020, 15 (2): 310- 316.
|
14 |
高娜, 吴清, 张满囤. 多尺度特征增强的SSD目标检测算法. 河北工业大学学报, 2022, 51 (2): 23- 30.
|
|
GAO N , WU Q , ZHANG M T . Multi-scale feature enhancement based SSD algorithm. Journal of Hebei University of Technology, 2022, 51 (2): 23- 30.
|
15 |
|
16 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2261-2269.
|
17 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 658-666.
|
18 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
19 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
20 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 936-944.
|
22 |
|
23 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2015: 1-7.
|
24 |
EVERINGHAM M , GOOL L , WILLIAMS C K , et al. The pascal Visual Object Classes (VOC) challenge. International Journal of Computer Vision, 2010, 88 (2): 303- 338.
doi: 10.1007/s11263-009-0275-4
|
25 |
RUSSAKOVSKY O , DENG J , SU H , et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115 (3): 211- 252.
doi: 10.1007/s11263-015-0816-y
|