1 |
杨森泉, 丁凡, 文昊翔, 等. 基于CA-YOLOv5的热轧带钢表面缺陷检测方法. 光电子·激光, 2024, 35 (1): 21- 28.
|
|
YANG S Q , DING F , WEN H X , et al. Hot-rolled steel strip surface defects detection based on CA-YOLOv5. Journal of Optoelectronics·Laser, 2024, 35 (1): 21- 28.
|
2 |
崔克彬, 焦静颐. 基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法. 图学学报, 2024, 45 (1): 112- 125.
|
|
CUI K B , JIAO J Y . Detection algorithm of steel surface defects based on MCB-FAH-YOLOv8. Journal of Graphics, 2024, 45 (1): 112- 125.
|
3 |
贵向泉, 刘世清, 李立, 等. 基于改进YOLOv8的景区行人检测算法. 计算机工程, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
|
GUI X Q , LIU S Q , LI L , et al. Scenic area pedestrian detection algorithm based on improved YOLOv8. Computer engineering, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
4 |
赵继达, 甄国涌, 储成群. 基于YOLOv8的无人机图像目标检测算法. 计算机工程, 2024, 50 (4): 113- 120.
doi: 10.19678/j.issn.1000-3428.0068268
|
|
ZHAO J D , ZHEN G Y , CHU F L . The UAV image target detection algorithm based on YOLOv8. Computer engineering, 2024, 50 (4): 113- 120.
doi: 10.19678/j.issn.1000-3428.0068268
|
5 |
汤踊, 韩军, 魏文力, 等. 深度学习在输电线路中部件识别与缺陷检测的研究. 电子测量技术, 2018, 41 (6): 60- 65.
|
|
TANG Y , HAN J , WEI W L , et al. Research on part recognition and defect detection of trainsmission line in deep learning. Electronic Measurement Technology, 2018, 41 (6): 60- 65.
|
6 |
李辉, 钟平, 戴玉静, 等. 基于深度学习的输电线路锈蚀检测方法的研究. 电子测量技术, 2018, 41 (22): 54- 59.
|
|
LI H , ZHONG P , DAI Y J , et al. Study on detection method of transmission line rusty based on deep learning. Electronic Measurement Technology, 2018, 41 (22): 54- 59.
|
7 |
马燕婷, 赵红东, 阎超, 等. 改进YOLOv5网络的带钢表面缺陷检测方法. 电子测量与仪器学报, 2022, 36 (8): 150- 157.
|
|
MA Y T , ZHAO H D , YAN C , et al. Strip steel surface defect detection method by improved YOLOv5 network. Journal of Electronic Measurement and Instrumentation, 2022, 36 (8): 150- 157.
|
8 |
程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究. 计算机工程与应用, 2021, 57 (19): 252- 258.
|
|
CHENG J Y , DUAN X H , ZHU W . Research on metal surface defect detection by improved YOLOv3. Computer Engineering and Applications, 2021, 57 (19): 252- 258.
|
9 |
卢俊哲, 张铖怡, 刘世鹏, 等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO. 计算机工程与应用, 2023, 59 (15): 318- 328.
|
|
LU J Z , ZHANG C Y , LIU S P , et al. Lightweight DCN-YOLO for strip surface defect detection in complex environments. Computer Engineering and Applications, 2023, 59 (15): 318- 328.
|
10 |
冷浩, 夏骄雄. 基于改进YOLOv7的金属表面缺陷检测方法. 计算机时代, 2023 (9): 48-53, 58.
|
|
LENG H , XIA J X . Metal surface defect detection method based on improved YOLOv7. Computer Era, 2023 (9): 48-53, 58.
|
11 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 356-367.
|
12 |
|
13 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 266-278.
|
14 |
吴磊, 储钰昆, 杨洪刚, 等. 面向铝合金焊缝DR图像缺陷的Sim-YOLOv8目标检测算法. 中国激光, 2024, 51 (16): 21- 30.
|
|
WU L , CHU Y K , YANG H G , et al. Sim-YOLOv8 target detection algorithm for defects in DR images of aluminum alloy welds. Chinese Journal of Lasers, 2024, 51 (16): 21- 30.
|
15 |
|
|
YOU Y P, MA B, ZHAO L, et al. Detection method of large coal in conveyor belt based on CA-YOLOv8[J/OL]. Journal of Computer-Aided Design& Computer Graphics, 2024: 1-12. [2024-02-08]. https://doi.org/10.3724/SP.J.1089.2023-00471. (in Chinese)
|
16 |
ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. [2023-12-20]. https://arxiv.org/abs/.1609.6999.
|
17 |
史涛, 崔杰, 李松. 优化改进YOLOv8实现实时无人机车辆检测的算法. 计算机工程与应用, 2024, 60 (9): 79- 89.
|
|
SHI T , CUI J , LI S . Optimization and improvement of YOLOv8 algorithm for real-time UAV vehicle detection. Computer Engineering and Applications, 2024, 60 (9): 79- 89.
|
18 |
WANG R X, SHIVANNA R, CHENG D, et al. DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of WWW'21. New York, USA: ACM Press, 2021: 1785-1797.
|
19 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 764-773.
|
20 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
21 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-12-20]. https://arxiv.org/abs/2112.05561.
|
22 |
ROY K , HASAN M , RUPTY L , et al. Bi-FPNFAS: bi-directional feature pyramid network for pixel-wise face anti-spoofing by leveraging Fourier spectra. Sensors, 2021, 21 (8): 2799.
|
23 |
QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 6070-6079.
|
24 |
曹雨淇, 徐慧英, 朱信忠, 等. 基于YOLOv8改进的打架斗殴行为识别算法: EFD-YOLO. 计算机工程与科学, 2024, 46 (10): 1825- 1834.
|
|
CAO Y Q , XU H Y , ZHU X Z , et al. An improved fighting behavior recognition algorithm based on YOLOv8: EFD-YOLO. Computer Engineering & Science, 2024, 46 (10): 1825- 1834.
|
25 |
|
26 |
杨阳, 杨帅, 闫敏, 等. 基于UDD-YOLO的边缘端绝缘子放电严重程度评估算法. 电子测量与仪器学报, 2024, 38 (1): 219- 227.
|
|
YANG Y , YANG S , YAN M , et al. Evaluation algorithm of discharge severity of edge insulator based on UDD-YOLO. Journal of Electronic Measurement and Instrumentation, 2024, 38 (1): 219- 227.
|