1 |
陶霄, 朱焱, 李春平. 基于注意力与多模态混合融合的谣言检测方法. 计算机工程, 2021, 47(12): 71- 77.
doi: 10.19678/j.issn.1000-3428.0059683
|
|
TAO X, ZHU Y, LI C P. Rumor detection method based on attention and multi-modal hybrid fusion. Computer Engineering, 2021, 47(12): 71- 77.
doi: 10.19678/j.issn.1000-3428.0059683
|
2 |
SHU K, SLIVA A, WANG S H, et al. Fake news detection on social media: a data mining perspective. ACM SIGKDD Explorations Newsletter, 2017, 19(1): 22- 36.
doi: 10.1145/3137597.3137600
|
3 |
GHANEM B, PONZETTO S P, ROSSO P, et al. FakeFlow: fake news detection by modeling the flow of affective information[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg, USA: ACL, 2021: 679-689.
URL
|
4 |
CHOUDHARY A, ARORA A. ImageFake: an ensemble convolution models driven approach for image based fake news detection[C]//Proceedings of the 7th International Conference on Signal Processing and Communication. Washington D. C., USA: IEEE Press, 2021: 182-187.
URL
|
5 |
GE S M, LIN F Z, LI C Y, et al. Deepfake video detection via predictive representation learning. ACM Transactions on Multimedia Computing, Communications, and Applications, 2022, 18(2s): 1- 21.
doi: 10.1145/3536426
|
6 |
|
|
|
7 |
SAMADI M, MOMTAZI S. Multichannel convolutional neural networks for detecting COVID-19 fake news. Digital Scholarship in the Humanities, 2023, 38(1): 379- 389.
doi: 10.1093/llc/fqac023
|
8 |
PALANI B, ELANGO S. BBC-FND: an ensemble of deep learning framework for textual fake news detection. Computers and Electrical Engineering, 2023, 110, 108866.
doi: 10.1016/j.compeleceng.2023.108866
|
9 |
LUVEMBE A M, LI W M, LI S H, et al. Dual emotion based fake news detection: a deep attention-weight update approach. Information Processing & Management, 2023, 60(4): 103354.
doi: 10.1016/j.ipm.2023.103354
|
10 |
WU L W, RAO Y. Adaptive interaction fusion networks for fake news detection[C]//Proceedings of European Conference on Artificial Intelligence. [S. l. ]: IOS Press, 2020: 2220-2227.
URL
|
11 |
TRUICǍ C O, APOSTOL E S, KARRAS P. DANES: deep neural network ensemble architecture for social and textual context-aware fake news detection. Knowledge-Based Systems, 2024, 294, 111715.
doi: 10.1016/j.knosys.2024.111715
|
12 |
LIU F, ZHANG X S, LIU Q. An emotion-aware approach for fake news detection. IEEE Transactions on Computational Social Systems, 2024, 11(3): 3516- 3524.
doi: 10.1109/TCSS.2023.3335269
|
13 |
MIN E X, RONG Y, BIAN Y T, et al. Divide-and-conquer: post-user interaction network for fake news detection on social media[C]//Proceedings of the ACM Web Conference. New York, USA: ACM Press, 2022: 1148-1158.
|
14 |
NGUYEN V H, SUGIYAMA K, NAKOV P, et al. FANG: leveraging social context for fake news detection using graph representation. Communications of the ACM, 2022, 65(4): 124- 132.
doi: 10.1145/3517214
|
15 |
TIAN L, ZHANG X Z, LAU J H. DUCK: rumour detection on social media by modelling user and comment propagation networks[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL, 2022: 4939-4949.
URL
|
16 |
JING J, WU H C, SUN J, et al. Multimodal fake news detection via progressive fusion networks. Information Processing & Management, 2023, 60(1): 103120.
doi: 10.1016/j.ipm.2022.103120
|
17 |
WU Y, ZHAN P W, ZHANG Y J, et al. Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, USA: ACL, 2021: 2560-2569.
URL
|
18 |
CAPUANO N, FENZA G, LOIA V, et al. Content-based fake news detection with machine and deep learning: a systematic review. Neurocomputing, 2023, 530, 91- 103.
doi: 10.1016/j.neucom.2023.02.005
|
19 |
VERMA P K, AGRAWAL P, MADAAN V, et al. MCred: multi-modal message credibility for fake news detection using BERT and CNN. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(8): 10617- 10629.
doi: 10.1007/s12652-022-04338-2
|
20 |
ALBAHAR M. A hybrid model for fake news detection: leveraging news content and user comments in fake news. IET Information Security, 2021, 15(2): 169- 177.
doi: 10.1049/ise2.12021
|
21 |
RAZA S, DING C. Fake news detection based on news content and social contexts: a transformer-based approach. International Journal of Data Science and Analytics, 2022, 13(4): 335- 362.
doi: 10.1007/s41060-021-00302-z
|
22 |
ZHANG X Y, CAO J, LI X R, et al. Mining dual emotion for fake news detection[C]//Proceedings of the ACM Web Conference. New York, USA: ACM Press, 2021: 3465-3476.
URL
|
23 |
HAMED S K, AB AZIZ M J, YAAKUB M R. Fake news detection model on social media by leveraging sentiment analysis of news content and emotion analysis of users' comments. Sensors (Base l), 2023, 23(4): 1748.
doi: 10.3390/s23041748
|
24 |
MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure viaKernel learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: ACL, 2017: 708-717.
URL
|
25 |
LI S, ZHAO Z, HU R F, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, USA: ACL, 2018: 138-143.
URL
|
26 |
PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014: 1532-1543.
URL
|
27 |
葛晓义, 张明书, 魏彬, 等. 基于双重情感感知的可解释谣言检测. 中文信息学报, 2022, 36(9): 129- 138.
doi: 10.3969/j.issn.1003-0077.2022.09.014
|
|
GE X Y, ZHANG M S, WEI B, et al. Dual emotion-aware method for interpretable rumor detection. Journal of Chinese Information Processing, 2022, 36(9): 129- 138.
doi: 10.3969/j.issn.1003-0077.2022.09.014
|
28 |
WANG Y Q, MA F L, JIN Z W, et al. EANN[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2018: 849-857.
|
29 |
KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014: 1746-1751.
URL
|
30 |
LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 2873-2879.
URL
|