[1] 王炳德, 杨柳涛. 基于YOLOv3的船舶目标检测算法[J]. 中国航海, 2020, 43(1): 67-72. WANG B D, YANG L T. Ship target detection algorithm based on YOLOv3[J]. Navigation of China, 2020, 43(1): 67-72. (in Chinese) [2] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. [3] NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567. [4] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 779-788. [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[M]. Berlin, Germany: Springer International Publishing, 2016. [7] 刘皓皎, 刘力双, 张明淳. 基于YOLOv5改进的红外目标检测算法[J]. 激光技术, 2024, 48(4): 534-541. LIU H J, LIU L S, ZHANG M C. An improved infrared object detection algorithm based on YOLOv5[J]. Laser Technology, 2024, 48(4): 534-541. (in Chinese) [8] 陈永麟, 王恒涛, 张上. 基于YOLO v7的轻量级红外目标检测算法[J]. 红外技术, 2024, 46(12): 1380-1389. CHEN Y L, WANG H T, ZHANG S. Lightweight infrared target detection algorithm based on YOLO v7[J]. Infrared Technology, 2024, 46(12): 1380-1389. (in Chinese) [9] 张莉莉, 王修晖. 基于FMF-YOLOv5的光伏组件红外图像故障诊断[J]. 计算机工程与应用, 2025, 61(2): 327-334. ZHANG L L, WANG X H. Infrared image fault diagnosis of photovoltaic modules based on FMF-YOLOv5[J]. Computer Engineering and Applications, 2025, 61(2): 327-334. (in Chinese) [10] 袁亚剑, 毛力. 一种增强前景的轻量级交通标志检测模型[J]. 计算机工程, 2025, 51(3): 54-63. YUAN Y J, MAO L. A lightweight traffic sign detection model with enhanced foregrounds[J]. Computer Engineering, 2025, 51(3): 54-63. (in Chinese) [11] 张上, 黄俊锋, 王恒涛, 等. 低空轻量级红外弱小目标检测算法[J]. 激光与红外, 2024, 54(1): 122-129. ZHANG S, HUANG J F, WANG H T, et al. Low altitude lightweight infrared weak small target detection algorithm[J]. Laser & Infrared, 2024, 54(1): 122-129. (in Chinese) [12] 常凯旋, 黄建华, 孙希延, 等. 基于双模态图像融合的无人机光学小目标检测算法[J]. 激光与光电子学进展, 2025, 62(4): 0428001. CHANG K X, HUANG J H, SUN X Y, et al. Optical small target detection method by drone based on dual-modal image fusion[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0428001. (in Chinese) [13] 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214. LI L, JIN Z X, YU X L, et al. Road vehicle and pedestrian detection based on YOLOv9 for Haar wavelet downsampling[J]. Computer Engineering and Applications, 2024, 60(20): 207-214. (in Chinese) [14] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL].[2024-04-05]. https://arxiv.org/abs/2402.13616. [15] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 7464-7475. [16] CUI C, GAO T, WEI S, et al. PP-LCNet: a lightweight CPU convolutional neural network[EB/OL].[2024-04-05]. https://arxiv.org/pdf/2109.15099. [17] TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]//Proceedings of the International Conference on Machine Learning.[S. l.]: PMLR, 2021: 10096-10106. [18] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[EB/OL].[2024-04-05]. https://arxiv.org/abs/2307.07662. [19] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11. [20] CHEN G, CHOI W, YU X, et al. Learning efficient object detection models with knowledge distillation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 742-751. [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA: IEEE Press, 2018: 7132-7141. [22] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL].[2024-04-05]. https://arxiv.org/abs/1704.04861. [23] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C, USA: IEEE Press, 2019: 1314-1324. [24] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning.[S. l.]: PMLR, 2019: 6105-6114. [25] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000. [26] HE J, ERFANI S, MA X, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[J]. Advances in Neural Information Processing Systems, 2021, 34: 20230-20242. [27] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 10778-10787. [28] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[EB/OL].[2024-04-05]. https://arxiv.org/abs/2405.14458. |