计算机工程

• 多媒体技术及应用 • 上一篇    下一篇

基于改进粒子滤波算法的视频超分辨率重建

王爱侠,赵 越   

  1. (东北大学信息科学与工程学院,沈阳110819)
  • 收稿日期:2014-05-15 出版日期:2015-04-15 发布日期:2015-04-15
  • 作者简介:王爱侠(1974 - ),女,讲师、博士,主研方向:图像处理,嵌入式系统;赵 越,博士研究生。
  • 基金项目:
    沈阳市科技局基金资助项目(F12277181)。

Video Super Resolution Reconstruction Based on Improved Particle Filtering Algorithm

WANG Aixia,ZHAO Yue   

  1. (School of Information Science & Engineering,Northeastern University,Shenyang 110819,China)
  • Received:2014-05-15 Online:2015-04-15 Published:2015-04-15

摘要: 视频超分辨率重建的一个必要步骤是视频运动估计,相对其他图像匹配算法,基于特征点的视频匹配算法具有更高的鲁棒性,但精确度受特征点的定位、选取和匹配误差的影响较大。为此,提出将粒子滤波应用到视频超分辨率的运动估计问题中,用粒子滤波算法来修正匹配误差,并针对粒子滤波中的粒子匮乏问题改进基本粒子滤波算法。实验结果表明,该算法比其他经典滤波算法估计精度有了较大提高,且在超分辨率重建中能更精确地进行运动估计,匹配精度和稳定性能都有所改善。

关键词: 超分辨率重建, 粒子滤波, 运动估计, 匹配精度, 无迹卡尔曼滤波, 权值

Abstract: In the super resolution reconstruction,a key step is the video motion estimation. Compared with other methods,matching algorithm based on features of video has higher robustness. However,the accuracy of this kind of methods is affected by the position and selection of feature points. To overcome this problem,this paper introduces the particle filtering into the motion estimation to reduce the matching error. The main disadvantage of the particle filtering is particle degeneracy. In this paper,an extended Kalman filtering is used to general the proposal distribution,and an Unscented Kalman Filtering(UKF) is used to refine particles. Experimental results show that,compared with other eight classic filtering algorithms, the proposed algorithm has much better performance, and for the super resolution reconstruction issue,the proposed algorithm can estimate the motion more accurately.

Key words: super resolution reconstruction, particle filtering, motion estimation, matching accuracy, Unscented Kalman Filtering(UKF), weight

中图分类号: