[1] ZHANG L, WU X.An edge-guided image interpolation algorithm via directional filtering and data fusion[J].IEEE Transactions on Image Processing, 2006, 15(8):2226-2238. [2] ZHANG K, GAO X, TAO D, et al.Single image super-resolution with non-local means and steering kernel regression[J].IEEE Transactions on Image Processing, 2012, 21(11):4544-4556. [3] 苏衡, 周杰, 张志浩.超分辨率图像重建方法综述[J].自动化学报, 2013, 39(8):1202-1213. SU H, ZHOU J, ZHANG Z H.A review of super-resolution image reconstruction methods[J].Journal of Automatica Sinica, 2013, 39(8):1202-1213.(in Chinese) [4] 苏秉华, 金伟其, 牛丽红, 等.超分辨率图像复原及其进展[J].光学技术, 2001, 27(1):6-9. SUN B C, JIN W Q, NIU L H.Super-resolution image restoration and its progress[J].Optical Technique, 2001, 27(1):6-9.(in Chinese) [5] 浦剑, 张军平.基于词典学习和稀疏表示的超分辨率方法[J].模式识别与人工智能, 2010, 23(3):335-340. PU J, ZHANG J P.Super-resolution method based on dictionary learning and sparse representation[J].Pattem Recognition and Aitificial Intelligence, 2010, 23(3):335-340.(in Chinese) [6] DONG C, LOY C C, HE K, et al.Learning a deep convolutional network for image super-resolution[C]//Proccedings of European Conference on Computer Vision.Berlin, Germay:Springer, 2014:184-199. [7] LIAO Q, POGGIO T.Bridging the gaps between residual learning, recurrent neural networks and visual cortex[EB/OL].[2020-10-01].https://www.researchgate.net/publication/301876854_Bridging_the_Gaps_Between_Residual_Learning_Recurrent_Neural_Networks_and_Visual_Cortex. [8] LUGMAYR A, DANELLJAN M, TIMOFTE R.Ntire 2020 challenge on real-world image super-resolution:methods and results[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:494-495. [9] KIM J, KWON L J, MU L K.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1637-1645. [10] HAN W, CHANG S, LIU D, et al.Image super-resolution via dual-state recurrent networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1654-1663. [11] HUPÉ J M, JAMES A C, PAYNE B R, et al.Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons[J].Nature, 1998, 394(6695):784-787. [12] GILBERT C D, SIGMAN M.Brain states:top-down influences in sensory processing[J].Neuron, 2007, 54(5):677-696. [13] STOLLENGA M F, MASCI J, GOMEZ F, et al.Deep networks with internal selective attention through feedbackconnections[EB/OL].[2020-10-01].https://www.researchgate.net/publication/263891809_Deep_Networks_with_Internal_Selective_Attention_through_Feedback_Connections. [14] ZAMIR A R, WU T L, SUN L, et al.Feedback networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1308-1317. [15] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4681-4690. [16] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [17] HUANG G, LIU Z, VAN D M L, et al.Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4700-4708. [18] MOSINSKA A, MARQUEZ N P, KOZINSKI M, et al.Beyond the pixel-wise loss for topology-aware delineation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3136-3145. [19] HARIS M, SHAKHNAROVICH G, UKITA N.Deep back-projection networks for super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1664-1673. [20] PENTINA A, SHARMANSKA V, LAMPERT C H.Curriculum learning of multiple tasks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:5492-5500. [21] GAO R, GRAUMAN K.On-demand learning for deep image restoration[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:1086-1095. [22] AGUSTSSON E, TIMOFTE R.Ntire 2017 challenge on single image super-resolution:dataset and study[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:126-135. [23] ZHANG K, ZUO W, GU S, et al.Learning deep CNN denoiser prior for image restoration[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3929-3938. [24] ZHANG K, ZUO W, ZHANG L.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3262-3271. [25] ZHANG Y, TIAN Y, KONG Y, et al.Residual dense network for image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2472-2481. |