[1]FARENZENA M,BAZZANI L,PERINA A,et al.Person re-identification by symmetry-driven accumulation of local features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2010:2360-2367.br/
[2]PEDAGADI S,ORWELL J,VELASTIN S,et al.Local fisher discriminant analysis for pedestrian re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2013:3318-3325.br/
[3]陈鸿昶,陈雷,李邵梅,等.基于显著度融合的自适应分块行人再识别[J].电子与信息学报,2017,39(11):2652-2660.br/
[4]ZHENG W S,GONG S,XIANG T.Person re-identification by probabilistic relative distance comparison[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2011:649-656.br/
[5]HIRZER M.Large scale metric learning from equivalence constraints[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:2288-2295.br/
[6]杜宇宁,艾海舟.基于统计推断的行人再识别算法[J].电子与信息学报,2014,36(7):1612-1618.br/
[7]齐美彬,檀胜顺,王运侠,等.基于多特征子空间与核学习的行人再识别[J].自动化学报,2016,42(2):299-308.br/
[8]LI W,ZHAO R,XIAO T,et al.DeepReID:deep filter pairing neural network for person re-identification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2014:152-159.br/
[9]LIU H,FENG J,QI M,et al.End-to-end comparative attention networks for person re-identification[J].IEEE Transactions on Image Processing,2017,26(7):3492-3506.br/
[10]MATSUKAWA T,SUZUKI E.Person re-identification using CNN features learned from combination of attributes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:2428-2433.br/
[11]LIN Y,ZHENG L,ZHENG Z,et al.Improving person re-identification by attribute and identity learning[EB/OL].[2018-02-21].https://www.researchgate.net.br/
[12]VISIN F,KASTNER K,CHO K,et al.ReNet:A recurrent neural network based alternative to convolutional networks[J].Computer Science,2015,25(7):2983-2996.br/
[13]HAN H,JAIN A K,SHAN S,et al.Heterogeneous face attribute estimation:a deep multi-task learning approach[J].IEEE Transactions on Pattern Analysis and Machine Intel-ligence,2017(99):1.br/
[14]USTINOVE E,GANIN Y,LEMPITSKY V.Multiregion bilinear convolutional neural networks for person re-identification[J].Computer Science,2015,48(10):2993-3003.br/
[15]VARIOR R R,SHUAI B,LU J,et al.A siamese long short-term memory architecture for human re-identification[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:135-153.br/
[16]ZHENG Z,ZHENG L,YANG Y.A discriminatively learned CNN embedding for person re-identification[J].ACM Transactions on Multimedia Computing Communica-tions and Applications,2016,14(1).br/
[17]ZHEN Z,ZHENG L,YANG Y.Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[EB/OL].[2018-02-21].https://www.researchgate.net.br/
[18]ZHENG L,HUANG Y,LU H,et al.Pose invariant embedding for deep person re-identification[EB/OL].[2018-02-21].https://www.researchgate.net.br/
[19]GENG M,WANG Y,XIANG T,et al.Deep transfer learning for person re-identification[EB/OL].[2018-02-21].https://www.researchgate.net.br/
[20]ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:a benchmark[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2016:1116-1124.br/
[21]LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:2197-2206.br/
[22]MAJI S,BERG A C,MALIK J.Classification using intersection kernel support vector machines is efficient[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8.br/
[23]DENG Y,LUO P,CHEN C L,et al.Learning to recognize pedestrian attribute[EB/OL].[2018-02-21].https://www.researchgate.net.br/
[24]SUDOWE P,SPITZER H,LEIBE B.Person attribute recognition with a jointly-trained holistic CNN model[C]//Proceedings of IEEE International Conference on Computer Vision Workshop.Washington D.C.,USA:IEEE Press,2015:329-337.br/
|