1 |
田野. 基于机器视觉的内螺纹参数检测系统设计[D]. 合肥: 合肥工业大学, 2017.
|
|
TIAN Y. A design of measuring system for female thread parameter based on machine vision[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
|
2 |
刘峰. 螺纹检测的机器视觉方法研究[D]. 天津: 天津大学, 2006.
|
|
LIU F. The study on the machine vision method of screw measurement[D]. Tianjin: Tianjin University, 2006. (in Chinese)
|
3 |
宋帅帅, 黄锋, 江燕斌. 基于机器视觉几何量测量技术研究进展分析. 电子测量技术, 2021, 44 (3): 22- 26.
URL
|
|
SONG S S, HUANG F, JIANG Y B. Analysis on the research progress of geometric measurement technology based on machine vision. Electronic Measurement Technology, 2021, 44 (3): 22- 26.
URL
|
4 |
PERNG D B, CHEN S H, CHANG Y S. A novel internal thread defect auto-inspection system. The International Journal of Advanced Manufacturing Technology, 2010, 47 (5): 731- 743.
|
5 |
LIN C F, LIN S F, HWANG C H, et al. Real-time image-based defect inspection system of internal thread for nut. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (8): 2830- 2848.
doi: 10.1109/TIM.2018.2872310
|
6 |
KOSAREVSKY S, LATYPOV V. Detection of screw threads in computed tomography 3D density fields. Measurement Science Review, 2013, 13 (6): 292- 297.
doi: 10.2478/msr-2013-0043
|
7 |
XU R G, HAO R Y, HUANG B Q. Efficient surface defect detection using self-supervised learning strategy and segmentation network. Advanced Engineering Informatics, 2022, 52, 101566.
doi: 10.1016/j.aei.2022.101566
|
8 |
胡欣, 周运强, 肖剑, 等. 基于改进YOLOv5的螺纹钢表面缺陷检测. 图学学报, 2023, 44 (3): 427- 437.
URL
|
|
HU X, ZHOU Y Q, XIAO J, et al. Surface defect detection of threaded steel based on improved YOLOv5. Journal of Graphics, 2023, 44 (3): 427- 437.
URL
|
9 |
姜阔胜, 徐瑞, 王迪. 基于深度学习的铜封帽内螺纹缺陷检测研究. 安徽理工大学学报(自然科学版), 2022, 42 (3): 93- 98.
URL
|
|
JIANG K S, XU R, WANG D. Research on crack detection of internal thread of copper sealing cap based on deep learning. Journal of Anhui University of Science and Technology (Natural Science), 2022, 42 (3): 93- 98.
URL
|
10 |
HUANG L P, DANG A T, HSU Q C. Comparison of different types of lens for defect detection of inner thread based on deep learning[C]//Proceedings of the 25th International Conference on Mechatronics Technology. Washington D. C., USA: IEEE Press, 2022: 1-4.
|
11 |
赵月, 张运楚, 孙绍涵, 等. 基于深度学习的螺纹钢表面缺陷检测. 计算机系统应用, 2021, 30 (7): 87- 94.
URL
|
|
ZHAO Y, ZHANG Y C, SUN S H, et al. Defect detection method of rebar based on deep learning. Computer Systems & Applications, 2021, 30 (7): 87- 94.
URL
|
12 |
MUSHTAQ F, RAMESH K, DESHMUKH S, et al. Nuts & bolts: YOLO-v5 and image processing based component identification system. Engineering Applications of Artificial Intelligence, 2023, 118, 105665.
doi: 10.1016/j.engappai.2022.105665
|
13 |
李曦琳, 王向军, 李红伟. 球面镜折反射全向视觉系统理论研究. 宇航计测技术, 2008, 28 (4): 16- 18.
URL
|
|
LI X L, WANG X J, LI H W. Research on catadioptric omnidirectional vision system for the spherical mirror. Journal of Astronautic Metrology and Measurement, 2008, 28 (4): 16- 18.
URL
|
14 |
田晓东. 折反射全景成像系统分析与设计. 仪表技术与传感器, 2006, (4): 48- 50.
URL
|
|
TIAN X D. Analysis and design of catadioptric panorama image system. Instrument Technique and Sensor, 2006, (4): 48- 50.
URL
|
15 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2023-08-13]. https://arxiv.org/abs/2207.02696.
|
16 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13708-13717.
|
17 |
XUE P P, HU W J, YUE C Y, et al. Thangka Yidam classification based on DenseNet and SENet. Journal of Electronic Imaging, 2022, 31 (4): 043039.
|
18 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 01155.
|
19 |
|
20 |
吴志高, 陈明. 基于改进YOLO v7的微藻轻量级检测方法. 大连海洋大学学报, 2023, 38 (1): 129- 139.
URL
|
|
WU Z G, CHEN M. Lightweight detection method for microalgae based on improved YOLO v7. Journal of Dalian Ocean University, 2023, 38 (1): 129- 139.
URL
|
21 |
|
22 |
戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测. 计算机工程, 2023, 49 (1): 41- 48.
URL
|
|
QI L L, GAO J L. Small object detection based on improved YOLOv7. Computer Engineering, 2023, 49 (1): 41- 48.
URL
|
23 |
|
24 |
WAN S H, GOUDOS S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Computer Networks, 2020, 168, 107036.
|
25 |
|
26 |
DONG X D, YAN S, DUAN C Q. A lightweight vehicles detection network model based on YOLOv5. Engineering Applications of Artificial Intelligence, 2022, 113, 104914.
|
27 |
|