[1] BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2012,3(1):993-1022. [2] JO Y,OH A H.Aspect and sentiment unification model for online review analysis[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2011:259-268. [3] JIANG Oi,SHI Lei,LIAN Rongzhong,et al.Latent topic embedding[C]//Proceedings of COLING'16.Osaka,Japan:ACL,2016:189-206. [4] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[EB/OL].[2019-08-26].https://arxiv.org/pdf/1310.4546.pdf. [5] KRESTEL R,FANKHAUSER P,NEJDL W.Latent Dirichlet allocation for tag recommendation[C]//Proceedings of the 3rd ACM Conference on Recommender Systems.New York,USA:ACM Press,2009:198-218. [6] WAN Pingyu.Design and implementation of recommendation system based on heterogeneous social network relationship and topic model[D].Beijing:Beijing University of Posts and Telecommunications,2019.(in Chinese)万坪禺.基于异构社交网络关系和主题模型的推荐系统的设计与实现[D].北京:北京邮电大学,2019. [7] LAU J,COLLIER N,BALDWIN T.On-line trend analysis with topic models:#twitter trends detection topic model online[EB/OL].[2019-08-26].http://pdfs.semanticscholar.org/f169/15e4e8d0361b8e577b2123ba4a36a25032ba.pdf. [8] YU Xuewei.Analysis and application of network public opinion based on topic model[D].Xiamen:Xiamen University,2017.(in Chinese)于学伟.基于主题模型的网络舆情分析及其应用研究[D].厦门:厦门大学,2017. [9] MCCALLUM A,WANG X,CORRADA-EMMANUEL A.Topic and role discovery in social networks with experiments on enron and academic email[J].Journal of Artificial Intelligence Research,2007,30:249-272. [10] GAO Zefeng,WANG Bang,XU Minghua.Event recom-mendation based on topic model analysis and user long-and short-term interest[J].Journal of Chinese Computer Systems,2018,39(4):625-630.(in Chinese)高泽锋,王邦,徐明华.基于主题模型分析与用户长短兴趣的活动推荐[J].小型微型计算机系统,2018,39(4):625-630. [11] WALLACH H M.Topic modeling:beyond bag-of-words[EB/OL].[2019-08-26].http://people.ee.duke.edu/~lcarin/icml2006.pdf. [12] LI Siyu.Research on semantic mining of short texts based on topic model and word vector[D].Taiyuan:Taiyuan University of Technology,2018.(in Chinese)李思宇.基于主题模型和词向量的短文本语义挖掘研究[D].太原:太原理工大学,2018. [13] WU Xukang,YANG Xuguang,CHEN Yuanyuan,et al.Topic combined word vector model[J].Computer Engineering,2018,44(2):233-237,270.(in Chinese)吴旭康,杨旭光,陈园园,等.主题联合词向量模型[J].计算机工程,2018,44(2):233-237,270. [14] REN Pengcheng.Research and implementation of intelligent full text retrieval system based on topic ranking and recom-mendation[D].Zhengzhou:Zhengzhou University,2018.(in Chinese)任鹏程.基于主题排序与推荐的智能全文检索系统研究与实现[D].郑州:郑州大学,2018. [15] YANG L,LIU Z,CHUA T S,et al.Topical word embeddings[EB/OL].[2019-08-26].http://nlp.csai.tsinghua.edu.cn/~lzy/publications/aaai2015_twe.pdf. [16] ZAHEER M,AHMED A,SMOLA A J.Latent LSTM allocation joint clustering and non-linear dynamic modeling of sequential data[EB/OL].[2019-08-26].http://proceedings.mlr.press/v70/zaheer17a/zaheer17a.pdf. [17] YIN Jianhua,WANG Jianyong.A Dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:1223-1256. [18] NGUYEN D Q,BILLINGSLEY R,DU L,et al.Improving topic models with latent feature word representations[J].Transactions of the Association for Computational Linguistics,2015,3:299-313. [19] LAU J H,BALDWIN T.The sensitivity of topic coherence evaluation to topic cardinality[C]//Proceedings of the North American Chapter of the Association for Computational Linguistics.Osaka,Japan:ACL,2016:148-156. [20] FANG A J,MACDONALD C,OUNIS I,et al.Topics in tweets:a user study of topic coherence metrics for twitter data[M]//XIAO G,SHAN W,SYSTEMS O,et al.Lecture notes in computer science.Berlin,Germany:Springer,2016:492-504. |