[1] GAN Yong,YANG Tingting,LIU Jianxin,et al.Research progress on the prevalence trend and influencing factors of stroke at home and abroad[J].Chinese Preventive Medicine,2019,20(2):139-144.(in Chinese)甘勇,杨婷婷,刘建新,等.国内外脑卒中流行趋势及影响因素研究进展[J].中国预防医学杂志,2019,20(2):139-144. [2] DAUNORAVICIENE K,ADOMAVICIENE A.Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients[J].Technology and Health Care Official Journal of the European Society for Engineering and Medicine,2018,26(S2):1-10. [3] SHENG Han,SHAO Shengwen,WANG Huiqin,et al.A study on the rehabilitation exercise compliance curve in stroke patients[J].Chinese Journal of Nursing,2016,51(6):712-715.(in Chinese)盛晗,邵圣文,王惠琴,等.脑卒中患者康复锻炼依从性动态变化的研究[J].中华护理杂志,2016,51(6):712-715. [4] BISIO I,DELFINO A,LAVAGETTO F,et al.Enabling IoT for in-home rehabilitation:accelerometer signals classification methods for activity and movement recognition[J].IEEE Internet of Things Journal,2016,4(1):135-146. [5] AHMADI M,O'NEIL M,FRAGALA-PINKHAM M,et al.Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy[J].Journal of NeuroEngineering and Rehabilitation,2018,15(1):105-114. [6] ZUO Guoyu,XU Zhaokun,LU Jiahao,et al.A structure-optimized DDAG-SVM action recognition method for upper limb rehabilitation training[J].Acta Automatica Sinica,2020,46(3):549-561.(in Chinese)左国玉,徐兆坤,卢佳豪,等.基于结构优化的DDAG-SVM上肢康复训练动作识别方法[J].自动化学报,2020,46(3):549-561. [7] PEI Xiaomin,FAN Huijie,TANG Yandong.Action recognition method of spatio-temporal feature fusion deep learning network[J].Infrared and Laser Engineering,2018,47(2):46-51.(in Chinese)裴晓敏,范慧杰,唐延东.时空特征融合深度学习网络人体行为识别方法[J].红外与激光工程,2018,47(2):46-51. [8] XIAO Xiao,XU Dan,WAN Wanggen.Overview:video recognition from handcrafted method to deep learning method[C]//Proceedings of International Conference on Audio,Language and Image.Washington D.C.,USA:IEEE Press,2017:646-651. [9] JI Shuiwang,XU Wei,YANG Ming,et al.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):221-231. [10] DONAHUE J,HENDRICKS L A,ROHRBACH M,et al.Long-term recurrent convolutional networks for visual recognition and description[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(4):677-691. [11] SIMONYAN K,ZISSERMAN A.Two-stream convolutional networks for action recognition in videos[J].Advances in Neural Information Processing Systems,2014,1:568-576. [12] CAO Congqi,ZHANG Yifan,ZHANG Chunjie,et al.Body joint guided 3-D deep convolutional descriptors for action recognition[J].IEEE Transactions on Cybernetics,2018,48(3):1095-1108. [13] FONTES D G A E,MENEZES C T D,PASCAL F,et al.Rehabilitation motion recognition based on the international biomechanical standards[J].Expert Systems with Application,2019,116:396-409. [14] HBALI Y,HBALI S,BALLIHI L,et al.Skeleton-based human activity recognition for elderly monitoring systems[J].IET Computer Vision,2018,12(1):16-26. [15] ZHANG Qingzhi,WU Panfeng,DU Xiaohui,et al.Rehabilitation recognition skeleton data depth learning based on RNN[EB/OL].[2020-03-14].http://doi.org/10.1051/matecconf/201927702007. [16] CAO Z,HIDALGO G,SIMON T,et al.OpenPose:realtime multi-person 2D pose estimation using part affinity fields[EB/OL].[2020-03-14].https://doi.org/10.1109/TPAMI.2019.2929257. [17] CHO K,VAN M B,BAHDANAU D,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2020-03-14].https://arxiv.org/abs/1406.1078. [18] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:21-37. [19] XU Mengya,YANG Weimin.Application of family medical gymnastics in community rehabilitation of ischemic stroke[J].Chinese Journal of Gerontology,2010,30(17):41-42.(in Chinese)许梦雅,杨伟民.家庭医疗体操在缺血性脑卒中社区康复中的应用[J].中国老年学杂志,2010,30(17):41-42. [20] SCHULDT C,LAPTEV I,CAPUTO B.Recognizing human actions:a local SVM approach[C]//Proceedings of the 17th International Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2004:32-36. [21] MEGRHI S,JMAL M,SOUIDENE W,et al.Spatio-temporal action localization and detection for human action recognition in big dataset[J].Journal of Visual Communication and Image Representation,2016,41:375-390. [22] LU Tianran,YU Fengqin,CHEN Ying.A human action recognition method based on LSDA dimension reduction[J].Computer Engineering,2019,45(3):237-241,249.(in Chinese)鹿天然,于凤芹,陈莹.一种基于线性序列差异分析降维的人体行为识别方法[J].计算机工程,2019,45(3):237-241,249. [23] MA Yuxi,TAN Li,DONG Xu,et al.Action recognition for intelligent monitoring[J].Journal of Image and Graphics,2019,24(2):128-136.(in Chinese)马钰锡,谭励,董旭,等.面向智能监控的行为识别[J].中国图象图形学报,2019,24(2):128-136. [24] SARGANO A B,WANG X,ANGELOV P,et al.Human action recognition using transfer learning with deep representations[C]//Proceedings of 2017 International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2017:463-469. [25] LI S,LI W Q,COOK C,et al.Independently Recurrent Neural Network(IndRNN):building a longer and deeper RNN[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5457-5466. [26] LEI T,ZHANG Yu,WANG S I,et al.Simple recurrent units for highly parallelizable recurrence[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.Philadelphia,USA:ACL Press,2018:4470-4481. [27] TRAN D,BOURDEV L,FERGUS R,et al.Learning spatio-temporal features with 3D convolutional networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2015:4489-4497. |