[1] LIU H Y, LANG B.Machine learning and deep learning methods for intrusion detection systems:a survey[J].Applied Sciences, 2019, 9(20):4396-4420. [2] AHMED M, MAHMOOD A N, HU J K.A survey of network anomaly detection techniques[J].Journal of Network and Computer Applications, 2016, 60(1):19-31. [3] BHATTACHARYYA D K, KALITA J K.Network anomaly detection:a machine learning perspective[M].Los Angeles, USA:CRC Press, 2013. [4] JIA F, LEI Y, GUO L.A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J].Neurocomputing, 2018, 272(1):619-628. [5] RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J].Nature, 1986, 323(6088):533-536. [6] BOURLARD H, KAMP Y.Auto-association by multilayer perceptrons and singular value decomposition[J].Biological Cybernetics, 1988, 59(4):291-294. [7] NG A.Sparse autoencoder[EB/OL].[2021-01-02].https://www.mendeley.com/catalogue/a06882b2-8546-33a0-9803-53cf01f649cc/. [8] YANG Y Q, ZHENG K F, WU C H, et al.Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network[J].Sensors, 2019, 19(11):2528-2547. [9] 张西宁, 向宙, 唐春华.一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用[J].西安交通大学学报, 2018, 52(7):51-59. ZHANG X N, XIANG Z, TANG C H.A deep convolutional auto-encoding neural network and its application in bearing fault diagnosis[J].Journal of Xi'an Jiaotong University, 2018, 52(7):51-59.(in Chinese) [10] IMANI M.Difference-based target detection using mahalanobis distance and spectral angle[J].International Journal of Remote Sensing, 2019, 40(4):811-831. [11] DORESWAMY, HOOSHMAND M K, GAD I.Feature selection approach using ensemble learning for network anomaly detection[J].CAAI Transactions on Intelligence Technology, 2020, 5(4):283-293. [12] 蒋华, 张红福, 罗一迪, 等.基于KL距离的自适应阈值网络流量异常检测[J].计算机工程, 2019, 45(4):108-113. JIANG H, ZHANG H F, LUO Y D, et al.Adaptive threshold network traffic anomaly detection based on KL distance[J].Computer Engineering, 2019, 45(4):108-113.(in Chinese) [13] 袁非牛, 章琳, 史劲亭, 等.自编码神经网络理论及应用综述[J].计算机学报, 2019, 42(1):203-230. YUAN F N, ZHANG L, SHI J T, et al.Theories and applications of auto-encoder neural networks:a literature survey[J].Chinese Journal of Computers, 2019, 42(1):203-230.(in Chinese) [14] 张志敏, 柴变芳, 李文斌.基于稀疏自编码器的属性网络嵌入算法[J].计算机工程, 2020, 46(7):98-103. ZHANG Z M, CHAI B F, LI W B.Attribute network embedding algorithm based on sparse autoencoder[J].Computer Engineering, 2020, 46(7):98-103.(in Chinese) [15] LI J P, HUANG R Y, LI W H.Intelligent fault diagnosis for bearing dataset using adversarial transfer learning based on stacked auto-encoder[J].Procedia Manufacturing, 2020, 49(1):75-80. [16] DING S, SU C, YU J.An optimizing BP neural network algorithm based on genetic algorithm[J].Artificial Intelligence Review, 2011, 36(2):153-162. [17] YADAV M S, KALPANA R.Data preprocessing for intrusion detection system using encoding and normalization approaches[C]//Proceedings of the 11th International Conference on Advanced Computing.Washington D.C., USA:IEEE Press, 2019:265-269. [18] MORABOENA S, KETEPALLI G, RAGAM P.A deep learning approach to network intrusion detection using deep autoencoder[J].Revue d'Intelligence Artificielle, 2020, 34(4):457-463. [19] MAO J, HU Y, JIANG D, et al.CBFS:a clustering-based feature selection mechanism for network anomaly detection[J].IEEE Access, 2020, 8(1):116216-116225. [20] LÜ P, YU Y, FAN Y, et al.Layer-constrained variational autoencoding kernel density estimation model for anomaly detection[J].Knowledge-Based Systems, 2020, 196(1):105753. [21] KIM T Y, CHO S B.Web traffic anomaly detection using C-LSTM neural networks[J].Expert Systems with Applications, 2018, 106(1):66-76. [22] ZHANG G L, WANG X D, LI R, et al.Network intrusion detection based on conditional wasserstein generative adversarial network and cost-sensitive stacked autoencoder[J].IEEE Access, 2020, 8:190431-190447. [23] NGUYEN M T, KIM K.Genetic convolutional neural network for intrusion detection systems[J].Future Generation Computer Systems, 2020, 113(1):418-427. [24] YANG T Y, LIU S Y, LIU J Y.Network traffic anomaly detection based on incremental possibilistic clustering algorithm[C]//Proceedings of the 3rd International Conference on Data Mining, Communications and Information Technology.Beijing, China:Asia Pacific Institute of Science and Engineering, 2019:536-543. |