作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (9): 1-11. doi: 10.19678/j.issn.1000-3428.0064352

• 热点与综述 • 上一篇    下一篇

基于图神经网络的自闭症辅助诊断研究综述

潘嘉诚, 董一鸿, 陈华辉   

  1. 宁波大学 信息科学与工程学院, 浙江 宁波 315211
  • 收稿日期:2022-03-31 修回日期:2022-05-03 发布日期:2022-05-26
  • 作者简介:潘嘉诚(1998—),男,硕士研究生,主研方向为医学图像处理与分析、图神经网络、机器学习;董一鸿(通信作者)、陈华辉,教授、博士。
  • 基金资助:
    国家自然科学基金(61502133);浙江省自然科学基金(LY20F020009);宁波市自然科学基金(202003N4086)。

Review of Research on Auxiliary Diagnosis of Autism Based on Graph Neural Networks

PAN Jiacheng, DONG Yihong, CHEN Huahui   

  1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
  • Received:2022-03-31 Revised:2022-05-03 Published:2022-05-26

摘要: 自闭症谱系障碍是一种复杂的神经系统发展障碍疾病,截至目前其病因尚不明确。图神经网络作为非欧几里得空间深度学习的重要分支,在处理图结构数据的相关任务中取得优异表现,为医学领域的成像和非成像模式的集成提供了可能,因此利用图神经网络进行自闭症等脑部疾病神经成像诊断逐渐成为研究热点。阐述传统机器学习方法在自闭症疾病预测中应用,介绍图神经网络的基本分类,按照图中节点与边关系的建模方法,从基于人群图和基于个体图两个角度对图神经网络在自闭症辅助诊断中的应用进行梳理和分析,并归纳现有诊断方法的优劣势。根据目前基于图神经网络的自闭症神经成像诊断的研究现状,总结了脑神经科学领域辅助诊断技术面临的主要挑战和未来研究方向,对于自闭症等脑部疾病辅助诊断的进一步研究具有指导意义和参考价值。

关键词: 深度学习, 图神经网络, 自闭症, 辅助诊断, 磁共振成像, 神经成像

Abstract: Autistic Spectrum Disorder(ASD) is a complex neurological developmental disorder;however, its etiology remains unclear.Graph Neural Network(GNN), a branch of Deep Learning(DL) in non-Euclidean space, has excelled in a variety of tasks dealing with graph-structured data.GNN provides a universal approach for the integration of imaging and non-imaging modalities in medicine.With their development, the use of GNNs for neuroimaging diagnosis of autism and other brain diseases has gradually become a research hotspot.This paper expounds the application of traditional machine learning methods in autism disease prediction, and introduces the basic classification of GNNs.Based on the modeling approach of node-edge relationships in graphs, the application of GNNs in the auxiliary diagnosis of autism is categorized and analyzed from two perspectives:population-based and individual-based graphs, and the advantages and disadvantages of existing methods are summarized.Finally, according to the existing studies of GNN-based neuroimaging diagnosis of autism, the main challenges hampering the auxiliary diagnosis in brain neuroscience are concluded, which displays a certain guiding significance and reference value for further research on auxiliary diagnosis of autism and other brain diseases.

Key words: Deep Learning(DL), Graph Neural Network(GNN), autism, auxiliary diagnosis, Magnetic Resonance Imaging(MRI), neuroimaging

中图分类号: