[1] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2022-02-08].https://arxiv.org/abs/1609.02907. [2] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].[2022-02-08].https://zhuanlan.zhihu.com/p/345328639. [3] XU K, LI C T, TIAN Y L, et al.Representation learning on graphs with jumping knowledge networks[EB/OL].[2022-02-08].https://arxiv.org/abs/1806.03536v2. [4] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).Stroudsburg, USA:Association for Computational Linguistics, 2014:1-10. [5] SHI X J, CHEN Z R, WANG H, et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[EB/OL].[2022-02-08].https://arxiv.org/abs/1506.04214. [6] LI Y J, TARLOW D, BROCKSCHMIDT M, et al.Gated graph sequence neural networks[EB/OL].[2022-02-08].https://arxiv.org/abs/1511.05493. [7] LI X X, ZHOU Y, DVORNEK N C, et al.Pooling regularized graph neural network for fMRI biomarker analysis[M].Berlin, Germany:Springer, 2020. [8] WANG M L, HUANG J S, LIU M X, et al.Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI[J].Medical Image Analysis, 2021, 71:102063. [9] ORRÙ G, PETTERSSON-YEO W, MARQUAND A F, et al.Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease:a critical review[J].Neuroscience & Biobehavioral Reviews, 2012, 36(4):1140-1152. [10] MURDAUGH D L, SHINKAREVA S V, DESHPANDE H R, et al.Differential deactivation during mentalizing and classification of autism based on default mode network connectivity[J].PLoS One, 2012, 7(11):1-11. [11] ABRAHAM A, MILHAM M P, DI MARTINO A, et al.Deriving reproducible biomarkers from multi-site resting-state data:an autism-based example[J].NeuroImage, 2017, 147:736-745. [12] KHOSLA M, JAMISON K, KUCEYESKI A, et al.3D convolutional neural networks for classification of functional connectomes[M].Berlin, Germany:Springer, 2018. [13] DVORNEK N C, VENTOLA P, PELPHREY K A, et al.Identifying autism from resting-state fMRI using long short-term memory networks[M].Berlin, Germany:Springer, 2017. [14] DI MARTINO A, YAN C G, LI Q, et al.The autism brain imaging data exchange:towards a large-scale evaluation of the intrinsic brain architecture in autism[J].Molecular Psychiatry, 2014, 19(6):659-667. [15] CAMERON C, YASSINE B, CARLTON C, et al.The neuro bureau preprocessing initiative:open sharing of preprocessed neuroimaging data and derivatives[J].Frontiers in Neuroinformatics, 2013, 7:41. [16] CAMERON C, SHARAD S, BRIAN C, et al.Towards automated analysis of connectomes:the Configurable Pipeline for the Analysis of Connectomes(C-PAC)[J].Frontiers in Neuroinformatics, 2013, 7:42. [17] PARISOT S, KTENA S I, FERRANTE E, et al.Spectral graph convolutions for population-based disease prediction[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2017:177-185. [18] PARISOT S, KTENA S I, FERRANTE E, et al.Disease prediction using graph convolutional networks:application to autism spectrum disorder and Alzheimer's disease[J].Medical Image Analysis, 2018, 48:117-130. [19] KAZI A, SHEKARFOROUSH S, ARVIND KRISHNA S, et al.InceptionGCN:receptive field aware graph convolutional network for disease prediction[M].Berlin, Germany:Springer, 2019. [20] CHEN L, HUANG Y M, LIAO B, et al.Graph learning approaches for graph with noise:application to disease prediction in population graph[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine.Washington D.C., USA:IEEE Press, 2020:2724-2729. [21] RAKHIMBERDINA Z, MURATA T.Linear graph convolutional model for diagnosing brain disorders[C]//Proceedings of International Conference on Complex Networks and Their Applications.Berlin, Germany:Springer, 2019:815-826. [22] ANIRUDH R, THIAGARAJAN J J.Bootstrapping graph convolutional neural networks for autism spectrum disorder classification[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2019:3197-3201. [23] RAKHIMBERDINA Z, LIU X, MURATA T.Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder[J].Sensors, 2020, 20(21):6001. [24] HUANG Y X, CHUNG A C S.Edge-variational graph convolutional networks for uncertainty-aware disease prediction[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2020:562-572. [25] CHEN H, ZHUANG F Z, XIAO L, et al.AMA-GCN:adaptive multi-layer aggregation graph convolutional network for disease prediction[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence.Montreal, Canada:International Joint Conferences on Artificial Intelligence Organization, 2021:1-20. [26] ZHENG S, ZHU Z, LIU Z, et al.Multi-modal graph learning for disease prediction[EB/OL].[2022-02-08]. https://arxiv.org/abs/2203.05880. [27] JIANG H, CAO P, XU M Y, et al.Hi-GCN:a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction[J].Computers in Biology and Medicine, 2020, 127:104096. [28] PAN L, LIU J, SHI M, et al.Identifying autism spectrum disorder based on individual-aware down-sampling and multi-modal learning[EB/OL].[2022-02-08].https://arxiv.org/abs/2109.09129v3. [29] CAO M L, YANG M, QIN C, et al.Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data[J].Biomedical Signal Processing and Control, 2021, 70:103015. [30] ZHOU H Y, ZHANG D Q.Graph-in-graph convolutional networks for brain disease diagnosis[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2021:111-115. [31] LI L, JIANG H, WEN G, et al.TE-HI-GCN:an ensemble of transfer hierarchical graph convolutional networks for disorder diagnosis[J].Neuroinformatics, 2021, 7:1-23. [32] ARYA D, OLIJ R, GUPTA D K, et al.Fusing structural and functional MRIs using graph convolutional networks for autism classification[C]//Proceedings of the 2nd International Conference on Embedded & Distributed Systems.Washington D.C., USA:IEEE Press, 2020:44-61. [33] FELOUAT H, OUKID-KHOUAS S.Graph convolutional networks and functional connectivity for identification of autism spectrum disorder[C]//Proceedings of the 2nd International Conference on Embedded & Distributed Systems(EDiS).Washington D.C., USA:IEEE Press, 2020:27-32. [34] KTENA S I, PARISOT S, FERRANTE E, et al.Distance metric learning using graph convolutional networks:application to functional brain networks[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2017:469-477. [35] KTENA S I, PARISOT S, FERRANTE E, et al.Metric learning with spectral graph convolutions on brain connectivity networks[J].NeuroImage, 2018, 169:431-442. [36] LOSTAR M, REKIK I.Deep hypergraph U-Net for brain graph embedding and classification[EB/OL].[2022-02-08].https://arxiv.org/abs/2008.13118. [37] WANG L B, LI K M, HU X P.Graph convolutional network for fMRI analysis based on connectivity neighborhood[J].Network Neuroscience, 2021, 5(1):83-95. [38] YAO D R, LIU M X, WANG M L, et al.Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI[C]//Proceedings of International Workshop on Graph Learning in Medical Imaging.Berlin, Germany:Springer, 2019:70-78. [39] YANG C D, WANG P Y, TAN J, et al.autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks[J].Computers in Biology and Medicine, 2021, 139:104963. [40] LI X X, ZHOU Y, DVORNEK N, et al.BrainGNN:interpretable brain graph neural network for fMRI analysis[J].Medical Image Analysis, 2021, 74:102233. [41] ZHAO T, LIU Y, NEVES L, et al.Data augmentation for graph neural networks[EB/OL].[2022-02-08].https://arxiv.org/abs/2006.06830v1. [42] CHEN D L, LIN Y K, LI W, et al.Measuring and relieving the over-smoothing problem for graph neural networks from the topological view[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:3438-3445. [43] CHEN Y, WU L F, ZAKI M J.Iterative deep graph learning for graph neural networks:better and robust node embeddings[C]//Proceedings of the 34th Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2020:19314-19326. [44] BONTONOU M, FARRUGIA N, GRIPON V.Few-shot learning for decoding brain signals[EB/OL].[2022-02-08].https://arxiv.org/abs/2010.12500. [45] ZHANG Y, BELLEC P.Transferability of brain decoding using graph convolutional networks[EB/OL].[2022-02-08].https://www.researchgate.net/publication/342368022_Transferability_of_Brain_decoding_using_Graph_Convolutional_Networks. [46] LIBERO L E, DERAMUS T P, LAHTI A C, et al.Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates[J].Cortex, 2015, 66:46-59. [47] YUN S, JEONG M, KIM R, et al.Graph transformer networks[EB/OL].[2022-02-08].https://arxiv.org/abs/1911.06455. [48] QIU Y L, YU S Z, ZHOU Y H, et al.Multi-channel sparse graph transformer network for early Alzheimer's disease identification[C]//Proceedings of the 18th International Symposium on Biomedical Imaging.Washington D.C., USA:IEEE Press, 2021:1794-1797. [49] SCHAEFER A, KONG R, GORDON E M, et al.Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J].Cerebral Cortex, 2017, 28(9):3095-3114. [50] ZHAO K, DUKA B, XIE H, et al.A dynamic graph convolutional neural network framework reveals new insights into connectome dysfunctions in ADHD[J].NeuroImage, 2021, 246:118774. |