[1] BATZ M,EICHENSEER A,SEILER J,et al.Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches[C]//Proceedings of 2015 IEEE International Conference on Image Processing.Washington D.C.,USA:IEEE Press,2015:58-62. [2] YAO Xunxiang,ZHANG Yunfeng,NING Yang,et al.Multi-scale feature image interpolation based on a rational fractal function[J].Journal of Image and Graphics,2016,21(4):482-489.(in Chinese)姚勋祥,张云峰,宁阳,等.多尺度有理分形的图像插值算法[J].中国图象图形学报,2016,21(4):482-489. [3] ZHANG Kaibing,GAO Xinbo,TAO Dacheng,et al.Single image super-resolution with non-local means and steering kernel regression[J].IEEE Transactions on Image Processing,2012,21(11):4544-4556. [4] TAO Zhiqiang,LI Hailin,ZHANG Hongbing.Iterative back projection super resolution reconstruction algorithm based on new edge directed interpolation[J].Computer Engineering,2016,42(6):255-260.(in Chinese)陶志强,李海林,张红兵.基于新边缘指导插值的迭代反投影超分辨率重建算法[J].计算机工程,2016,42(6):255-260. [5] TIMOFTE R,DE V,GOOL L V.Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of 2013 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2013:1920-1927. [6] RADU T,VINCENT D S,LUC V G.A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 12th Asian Conference on Computer Vision.Berlin,Germany:Springer,2014:111-126. [7] PELEG T,ELAD M.A statistical prediction model based on sparse representations for single image super-resolution[J].IEEE Transactions on Image Processing,2014,23(6):2569-2582. [8] YANG J C,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873. [9] ZHANG Wanxu,SHI Jianxiong,CHEN Xiaoxuan,et al.Image super-resolution reconstruction based on sparse representation and guided filtering[J].Computer Engineering,2018,44(9):212-217.(in Chinese)张万绪,史剑雄,陈晓璇,等.基于稀疏表示与引导滤波的图像超分辨率重建[J].计算机工程,2018,44(9):212-217. [10] YUAN Kunpeng,XI Zhihong.Image super resolution based on depth jumping cascade[J].Acta Optica Sinica,2019,39(7):243-252.(in Chinese)袁昆鹏,席志红.基于深度跳跃级联的图像超分辨率重建[J].光学学报,2019,39(7):243-252. [11] HARIS M,SHAKHNAROVICH G,UKITA N.Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1664-1673. [12] WU Lei,LÜ Guoqiang,XUE Zhitian,et al.Super-resolution reconstruction of images based on multi-scale recursive network[J].Acta Optica Sinica,2019,39(6):90-97.(in Chinese)吴磊,吕国强,薛治天,等.基于多尺度递归网络的图像超分辨率重建[J].光学学报,2019,39(6):90-97. [13] DONG C,LOY C C,HE K M,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [14] SHI W Z,CABALLERO J,HUSZAR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1874-1883. [15] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1646-1654. [16] LAI W S,HUANG J B,AHUJA N,et al.Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:624-632. [17] LAI Rui,YANG Yintang,ZHOU Huixin,et al.Total variation regularized iterative back-projection method for single frame image super resolution[C]//Proceedings of 2012 IEEE 11th International Conference on Signal Processing.Washington D.C.,USA:IEEE Press,2012:931-934. [18] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:1-9. [19] TIMOFTE R,AGUSTSSON E,GOOL L V,et al.Ntire 2017 challenge on single image super-resolution methods and results[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C.,USA:IEEE Press,2017:114-125. [20] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of International Conference on Curves and Surfaces.Berlin,Germany:Springer,2012:711-730. [21] GLOROT X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[J].Journal of Machine Learning Research,2011,15:315-323. [22] HUANG Yihui,FENG Qianjin.Segmentation of brain tumor on magnetic resonance images using 3D full-convolutional densely connected convolutional net-works[J].Journal of Southern Medical University,2018,38(6):661-668. |