[1] Cisco.Encrypted traffic analytics white paper[EB/OL].[2020-05-07].https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf. [2] 王健.基于HTTP的僵尸网络C&C流量检测方法研究[D].成都:电子科技大学,2019. WANG J.Research on HTTP botnet C&C Traffic Detection Method[D].Chengdu:University of Electronic Science and Technology,2019.(in Chinese) [3] Gartner.Encrypted Web traffic[EB/OL].[2020-05-07].https://www.gartner.com/en/documents/3869861. [4] REZAEI S,LIU X.Deep learning for encrypted traffic classification:an overview[J].IEEE Communications Magazine,2019,57(5):76-81. [5] ANDERSON B,PAUL S,MCGREW D.Deciphering malware's use of TLS(without decryption)[J].Journal of Computer Virology and Hacking Techniques,2018,14(3):195-211. [6] LIU J,ZENG Y,SHI J,et al.MalDetect:a structure of encrypted malware traffic detection[J].CMC-Computers,Materials & Continua,2019,60(2):721-739. [7] YU T D,ZOU F T,LI L S,et al.An encrypted malicious traffic detection system based on neural network[C]//Proceedings of 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery.Washington D.C.,USA:IEEE Press,2019:62-70. [8] BAZUHAIR W,LEE W.Detecting malign encrypted network traffic using Perlin noise and convolutional neural network[EB/OL].[2020-05-07].https://www.researchgate.net/publication/339903495_Detecting_Malign_Encrypted_Network_Traffic_Using_Perlin_Noise_and_Convolutional_Neural_Network. [9] 胡斌,周志洪,姚立红,等.基于报文负载和流指纹联合特征的TLS恶意流量检测[J].计算机工程,2020,46(11):157-163. HU B,ZHOU Z H,YAO L H,et al.TLS malicious traffic detection based on combined features of packet payload and stream fingerprints[J].Computer Engineering,2020,46(11):157-163.(in Chinese) [10] WANG W,ZHU M,ZENG X W,et al.Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of International Conference on Information Networking.Washington D.C.,USA:IEEE Press,2017:712-717. [11] 王攀,陈雪娇.基于堆栈式自动编码器的加密流量识别方法[J].计算机工程,2018,44(11):140-147,153. WANG P,CHEN X J.SAE-based encrypted traffic identification method[J].Computer Engineering,2018,44(11):140-147,153.(in Chinese) [12] CHENG H,XIE J X,CHEN L H.CNN-based encrypted C&C communication traffic identification method[J].Computer Engineering,2019,45(8):31-34,41.(in Chinese)程华,谢金鑫,陈立皇.基于CNN的加密C&C通信流量识别方法[J].计算机工程,2019,45(8):31-34,41. [13] ILIYASU A S,DENG H.Semi-supervised encrypted traffic classification with deep convolutional generative adversarial networks[J].IEEE Access,2020,8:118-126. [14] GUO L L,WU Q Q,LIU S L,et al.Deep learning-based real-time VPN encrypted traffic identification methods[J].Journal of Real-Time Image Processing,2020,17(1):103-114. [15] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Berlin,Germany:Springer,2017:5998-6008. [16] WANG W,SHENG Y Q,WANG J J,et al.HAST-IDS:learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J].IEEE Access,2018,6:1792-1806. [17] KIM Y.Convolutional neural networks for sentence classification[EB/OL].[2020-05-07].https://arxiv.org/abs/1408.5882. [18] LASHKARI A H,KADIR A F A,TAHERI L,et al.Toward developing a systematic approach to generate benchmark android malware datasets and classification[C]//Proceedings of 2018 International Carnahan Conference on Security Technology.Washington D.C.,USA:IEEE Press,2018:1-8. [19] WANG W,ZHU M,WANG J,et al.End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of 2017 IEEE International Conference on Intelligence and Security Informatics.Washington D.C.,USA:IEEE Press,2017:22-27. [20] 刘冲.基于深度学习的流量分类系统[D].北京:北京邮电大学,2019. LIU C.Traffic classification system based on deep learning[D].Beijing:Beijing University of Posts and Telecommunications,2019.(in Chinese) |