[1] KOCHER P, JAFFE J, JUN B.Differential power analysis[C]//Proceedings of Annual International Cryptology Conference.Berlin, Germany:Springer, 1999:388-397. [2] QUISQUATER J J, SAMYDE D.Electromagnetic analysis (ema):measures and counter-measures for smart cards[C]//Proceedings of International Conference on Research in Smart Cards.Berlin, Germany:Springer, 2001:200-210. [3] KOCHER P C.Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[C]//Proceedings of Annual International Cryptology Conference.Berlin, Germany:Springer, 1996:104-113. [4] GOODFELLOW I, BENGIO Y, COURVILLE A, et al.Deep learning[M].Cambridge, USA:MIT Press, 2016. [5] BACKES M, DÜRMUTH M, GERLING S, et al.Acoustic side-channel attacks on printers[EB/OL].[2020-07-05].https://www.usenix.net/legacy/events/sec10/tech/full_papers/Backes.pdf. [6] HOSPODAR G, GIERLICHS B, DE MULDER E, et al.Machine learning in side-channel analysis:a first study[J].Journal of Cryptographic Engineering, 2011, 1(4):293-302. [7] LERMAN L, BONTEMPI G, MARKOWITCH O.Side channel attack:an approach based on machine learning[J].Center for Advanced Security Research Darmstadt, 2011, 5:29-41. [8] HEUSER A, ZOHNER M.Intelligent machine homicide[C]//Proceedings of International Workshop on Constructive Side-Channel Analysis and Secure Design.Berlin, Germany:Springer, 2012:249-264. [9] BARTKEWITZ T, LEMKE-RUST K.Efficient template attacks based on probabilistic multi-class support vector machines[C]//Proceedings of International Conference on Smart Card Research and Advanced Applications.Berlin, Germany:Springer, 2012:263-276. [10] MARTINASEK Z, ZEMAN V.Innovative method of the power analysis[J].Radioengineering, 2013, 22(2):586-594. [11] BRIER E, CLAVIER C, OLIVIER F.Correlation power analysis with a leakage model[C]//Proceedings of International Workshop on Cryptographic Hardware and Embedded Systems.Berlin, Germany:Springer, 2004:16-29. [12] PICEK S, HEUSER A, GUILLEY S.Template attack versus Bayes classifier[J].Journal of Cryptographic Engineering, 2017, 7(4):1-9. [13] GAOMING D, DI X, XIAOQIN L, et al.Identify random delays from side channel traces with HMM[C]//Proceedings of 2013 International Conference on Instrumentation, Measurement, Computer, Communication and Control.Washington D.C., USA:IEEE Press, 2013:1093-1096. [14] KONG Y, SAEEDI E.The investigation of neural networks performance in side-channel attacks[J].Artificial Intelligence Review, 2019, 52(1):607-623. [15] LIU B, FENG H, YUAN Z, et al.Learning to attack from electromagnetic emanation[C]//Proceedings of 2012 Asia-Pacific Conference on Environmental Electromagnetics (CEEM).Washington D.C., USA:IEEE Press, 2012:202-205. [16] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [17] LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. [18] HOWARD J, RUDER S.Universal language model fine-tuning for text classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.San Diego, USA:Association for Computational Linguistics, 2018:328-339. [19] 花君, 严珂, 陆慧娟, 等.基于深度学习LSTM的空调故障诊断[J].中国计量大学学报, 2019, 30(2):197-202. HUA J, YAN K, LU H J, et al.Air conditioner fault diagnosis based on deep learning LSTM[J].Journal of China University of Metrology, 2019, 30(2):197-202.(in Chinese) [20] 胡涛, 佃松宜, 蒋荣华.基于长短时记忆神经网络的硬件木马检测[J].计算机工程, 2020, 46(7):110-115. HU T, DIAN S Y, JIANG R H.Hardware trojan detection based on long short-term memory neural network[J].Computer Engineering, 2020, 46(7):110-115.(in Chinese) [21] WANG H, BRISFORS M, FORSMARK S, et al.How diversity affects deep-learning side-channel attacks[C]//Proceedings of 2019 IEEE Nordic Circuits and Systems Conference(NORCAS):NORCHIP and International Symposium of System-on-Chip(SoC).Washington D.C., USA:IEEE Press, 2019:1-7. |