作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 285-293. doi: 10.19678/j.issn.1000-3428.0069393

• 图形图像处理 • 上一篇    下一篇

面向车窗状态检测的轻量化目标检测模型

梅华威1,2, 王泽洋1, 苏攀1,3,*(), 尚虹霖1, 方毅1   

  1. 1. 华北电力大学控制与计算机工程学院, 河北 保定 071003
    2. 复杂能源系统智能计算教育部工程研究中心, 河北 保定 071003
    3. 河北省能源电力知识计算重点实验室, 河北 保定 071003
  • 收稿日期:2024-02-21 修回日期:2024-07-18 出版日期:2025-12-15 发布日期:2024-09-10
  • 通讯作者: 苏攀
  • 基金资助:
    河北省高等学校科学研究项目青年基金项目(QN202318)

Lightweight Object Detection Model for Car Window Status Detection

MEI Huawei1,2, WANG Zeyang1, SU Pan1,3,*(), SHANG Honglin1, FANG Yi1   

  1. 1. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, Hebei, China
    2. Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education, Baoding 071003, Hebei, China
    3. Hebei Key Laboratory of Knowledge Computing for Energy and Power, Baoding 071003, Hebei, China
  • Received:2024-02-21 Revised:2024-07-18 Online:2025-12-15 Published:2024-09-10
  • Contact: SU Pan

摘要:

针对当前智慧化城市建设中安防检测技术对检测精度和检测速度的要求, 提出了一种基于改进YOLOv5s的轻量化车窗目标检测模型。该模型在保证精度的同时降低了计算复杂度, 能够部署在边缘计算平台中, 实现对车窗开闭状态的检测。首先, 在主干网络中引入FasterNet, 以减少模型的计算量和模型参数; 其次, 在特征融合阶段, 使用GSConv降低模型的复杂度, 并使用双向特征金字塔网络(BiFPN)连接特征融合网络, 以融合更多的特征信息; 最后, 使用结构化交并比(SIoU)损失函数加快收敛。实验结果表明, 改进后的算法性能在车窗数据集上相较于原算法明显得到提升, 交并比(IoU)阈值在0.5以及0.5~0.95范围内时模型的平均精度mAP@0.5和mAP@0.5:0.95分别提高了0.001和0.005, 模型的参数量大幅减少且浮点运算数(FLOPs)大幅降低, 仅为原模型的18.74%和17.09%, 推理速度提升了260%。改进后的模型部署在NVIDIA Jetson Nano平台上时有着良好的表现。

关键词: FasterNet, GSConv, 双向特征金字塔网络, 轻量化, 车窗状态检测

Abstract:

To improve the security detection technology in smart cities in terms of detection accuracy and speed, a lightweight car window target detection model based on improved YOLOv5s is proposed. The proposed model reduces computational complexity while ensuring accuracy and can be deployed in edge computing platforms to detect the open and closed states of car windows. First, FasterNet is introduced into the backbone network to reduce the computational complexity and number of model parameters. Second, in the feature fusion stage, GSConv is used to reduce the complexity of the model and a Bidirectional Feature Pyramid Network (BiFPN) is used to connect the feature fusion network and fuse more feature information. Finally, the Structured Intersection over Union (SIoU) loss function is employed to accelerate convergence. The experimental results show that the improved algorithm exhibits significant differences compared with the original algorithm on the car window dataset. The mean Average Precision (mAP@0.5) for the Intersection over Union (IoU) threshold of 0.5 and mean average precision (mAP@0.5:0.95) for IoU in the range of 0.5 to 0.95 increase by 0.001 and 0.005, respectively. The number of parameters and Floating Point Operations Per Second (FLOPs) of the model are significantly reduced to 18.74% and 17.09% of those of the original model, respectively, and the inference speed is increased by 260%. The proposed model exhibits good performance when deployed on an NVIDIA Jetson Nano.

Key words: FasterNet, GSConv, Bidirectional Feature Pyramid Network (BiFPN), lightweight, car window status detection