| 1 |
DENG S G , ZHAO H L , FANG W J , et al. Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet of Things Journal, 2020, 7 (8): 7457- 7469.
doi: 10.1109/JIOT.2020.2984887
|
| 2 |
LV Z H , CHEN D L , LOU R R , et al. RETRACTED: intelligent edge computing based on machine learning for smart city. Future Generation Computer Systems, 2021, 115, 90- 99.
doi: 10.1016/j.future.2020.08.037
|
| 3 |
HUANG K Q , TAN T N . Vs-star: a visual interpretation system for visual surveillance. Pattern Recognition Letters, 2010, 31 (14): 2265- 2285.
doi: 10.1016/j.patrec.2010.05.029
|
| 4 |
|
| 5 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
| 6 |
|
| 7 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
| 8 |
|
| 9 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 1-9.
|
| 10 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
| 11 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
| 12 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
| 13 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 779-788.
|
| 14 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 6517-6525.
|
| 15 |
|
| 16 |
|
| 17 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
| 18 |
|
| 19 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-01-21]. https://arxiv.org/abs/1704.04861.
|
| 20 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
| 21 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 1314-1324.
|
| 22 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
| 23 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Computer Vision - ECCV 2018. Cham, Switzerland: Springer International Publishing, 2018: 122-138.
|
| 24 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
| 25 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2023: 12021-12031.
|
| 26 |
何雨, 田军委, 张震, 等. YOLOv5目标检测的轻量化研究. 计算机工程与应用, 2023, 59 (1): 92- 99.
|
|
HE Y , TIAN J W , ZHANG Z , et al. Lightweight Research of YOLOv5 Target Detection. Computer Engineering and Applications, 2023, 59 (1): 92- 99.
|
| 27 |
张宝朋, 康谦泽, 李佳萌, 等. 轻量化的YOLOv4目标检测算法. 计算机工程, 2022, 48 (8): 206- 214.
doi: 10.19678/j.issn.1000-3428.0062216
|
|
ZHANG B P , KANG Q Z , LI J M , et al. Lightweight YOLOv4 target detection algorithm. Computer Engineering, 2022, 48 (8): 206- 214.
doi: 10.19678/j.issn.1000-3428.0062216
|
| 28 |
舒腾辉, 丛屾. 基于改进YOLOv5s的轻量化车辆目标检测算法. 黑龙江大学工程学报(中英俄文), 2023, 14 (4): 33- 39.
|
|
SHU T H , CONG S . Lightweight vehicle target detection algorithm based on improved YOLOv5s. Journal of Engineering of Heilongjiang University, 2023, 14 (4): 33- 39.
|