| 1 |
曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述. 中国图象图形学报, 2022, 27 (6): 1697- 1722.
|
|
CAO J L , LI Y L , SUN H Q , et al. A survey on deep learning based visual object detection. Journal of Image and Graphics, 2022, 27 (6): 1697- 1722.
|
| 2 |
吕璐, 程虎, 朱鸿泰, 等. 基于深度学习的目标检测研究与应用综述. 电子与封装, 2022, 22 (1): 72- 80.
|
|
LV L , CHENG H , ZHU H T , et al. Progress of research and application of object detection based on deep learning. Electronics & Packaging, 2022, 22 (1): 72- 80.
|
| 3 |
连哲, 殷雁君, 云飞, 等. 基于深度学习的自然场景文本检测综述. 计算机工程, 2024, 50 (3): 16- 27.
doi: 10.19678/j.issn.1000-3428.0067427
|
|
LIAN Z , YIN Y J , YUN F , et al. Review of natural scene text detection based on deep learning. Computer Engineering, 2024, 50 (3): 16- 27.
doi: 10.19678/j.issn.1000-3428.0067427
|
| 4 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
| 5 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2961-2969.
|
| 6 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
| 7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 779-788.
|
| 8 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 6517-6525.
|
| 9 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 89-95.
|
| 10 |
潘晓英, 贾凝心, 穆元震, 等. 小目标检测研究综述. 中国图象图形学报, 2023, 28 (9): 2587- 2615.
|
|
PAN X Y , JIA N X , MU Y Z , et al. Survey of small target detection. Journal of Image and Graphics, 2023, 28 (9): 2587- 2615.
|
| 11 |
刘洪江, 王懋, 刘丽华, 等. 基于深度学习的小目标检测综述. 计算机工程与科学, 2021, 43 (8): 1429- 1442.
|
|
LIU H J , WANG M , LIU L H , et al. A survey of small target detection based on deep learning. Computer Engineering and Science, 2021, 43 (8): 1429- 1442.
|
| 12 |
ZHANG B R , CAI H L , WEN L X . A gradient fusion-based image data augmentation method for reflective workpieces detection under small size datasets. Machine Vision and Applications, 2024, 35, 29.
doi: 10.1007/s00138-024-01512-8
|
| 13 |
贵向泉, 刘世清, 李立, 等. 基于改进YOLOv8的景区行人检测算法. 计算机工程, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
|
GUI X Q , LIU S Q , LI L , et al. Pedestrian detection algorithm for scenic spots based on improved YOLOv8. Computer Engineering, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
| 14 |
黄豪杰, 段先华, 黄欣辰. 基于深度学习水果检测的研究与改进. 计算机工程与应用, 2020, 56 (3): 127- 133.
|
|
HUANG H J , DUAN X H , HUANG X C . Research and improvement of fruits detection based on deep learning. Computer Engineering and Applications, 2020, 56 (3): 127- 133.
|
| 15 |
吴双忱, 左峥嵘. 基于深度卷积神经网络的红外小目标检测. 红外与毫米波学报, 2019, 38 (3): 371- 380.
|
|
WU S C , ZUO Z R . Small target detection in infrared images using deep convolutional neural networks. Journal of Infrared and Millimeter Waves, 2019, 38 (3): 371- 380.
|
| 16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
| 17 |
杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法. 计算机工程与应用, 2022, 58 (9): 201- 207.
|
|
YANG Y B , LI D . Lightweight helmet wearing detection algorithm of improved YOLOv5. Computer Engineering and Applications, 2022, 58 (9): 201- 207.
|
| 18 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Cham, German: Springer, 2018: 3-19.
|
| 19 |
ZHU X K, LV S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[EB/OL]. [2024-05-22]. https://arxiv.org/abs/2108.11539.
|
| 20 |
ZHANG X, LIU C, YANG D G, et al. RFAConv: innovating spatial attention and standard convolutional operation[EB/OL]. [2024-05-22]. https://arxiv.org/abs/2304.03198.
|
| 21 |
WAN D H , LU R S , SHEN S Y , et al. Mixed local channel attention for object detection. Engineering Applications of Artificial Intelligence, 2023, 123, 106442.
doi: 10.1016/j.engappai.2023.106442
|
| 22 |
|
| 23 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. [2024-05-22]. https://arxiv.org/abs/1911.08287.
|
| 24 |
|
| 25 |
CHENG Y, ZHU J, JIANG M, et al. Flow: a dataset and benchmark for floating waste detection in inland waters[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 10953-10962.
|
| 26 |
DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Washington D.C., USA: IEEE Press, 2019: 213-226.
|
| 27 |
BOZCAN I, KAYACAN E. AU-AIR: a multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Washington D.C., USA: IEEE Press, 2020: 8504-8510.
|
| 28 |
Zhang S , Xie Y , Wan J , et al. WiderPerson: a diverse dataset for dense pedestrian detection in the wild. IEEE Transactions on Multimedia, 2020, 22 (2): 380- 393.
doi: 10.1109/TMM.2019.2929005
|
| 29 |
|
| 30 |
|
| 31 |
FENG Z H, KITTLER J, AWAIS M, et al. Wing loss for robust facial landmark localisation with convolutional neural networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2235-2245.
|
| 32 |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 658-666.
|
| 33 |
ZHANG Z . Drone-YOLO: an efficient neural network method for target detection in drone images. Drones, 2023, 7 (8): 526.
doi: 10.3390/drones7080526
|
| 34 |
LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2024-05-22]. https://arxiv.org/abs/2209.02976.
|
| 35 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. [2024-05-22]. https://arxiv.org/abs/2207.02696.
|
| 36 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-05-22]. https://arxiv.org/abs/2402.13616.
|
| 37 |
LIANG S , WU H , ZHEN L , et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (12): 25345- 25360.
doi: 10.1109/TITS.2022.3158253
|