[1] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE Press, 2016: 2414-2423. [2] DENG Y Y, TANG F, DONG W M, et al. StyTr2: image style transfer with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 11316-11326. [3] 毛琳, 王萌, 杨大伟. 内容特征一致性风格迁移网络[J]. 计算机辅助设计与图形学学报, 2022, 34(6): 892-900. MAO L, WANG M, YANG D W. Content consistency preserving style transfer network[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(6): 892-900. (in Chinese) [4] CHIANG P-Z, TSAI M S, TSENG H Y, et al. Stylizing 3D scene via implicit representation and HyperNetwork[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE Press, 2022: 215-224. [5] WU J Y, HOU L F, LI Z J, et al. Preserving structural consistency in arbitrary artist and artwork style transfer[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(3): 2830-2838. [6] LUAN F J, PARIS S, SHECHTMAN E, et al. Deep photo style transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA: IEEE Press, 2017: 6997-7005. [7] LI Y J, LIU M Y, LI X T, et al. A closed-form solution to photorealistic image stylization[C]//Proceedings of ECCV 2018. Berlin, Germany: Springer, 2018: 468-483. [8] 张颖涛, 张杰, 张睿, 等. 全局信息引导的真实图像风格迁移[J]. 计算机科学, 2022, 49(7): 100-105. ZHANG Y T ZHANG J, ZHANG R, et al. Photorealistic style transfer guided by global information[J]. Computer Science, 2022, 49(7): 100-105. (in Chinese) [9] GUNAWAN A, KIM S Y, SIM H, et al. Modernizing old photos using multiple references via photorealistic style transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 12460-12469. [10] WU Z J, ZHU Z, DU J P, et al. CCPL: contrastive coherence preserving loss for versatile style transfer[C]//Proceedings of ECCV 2022. Berlin, Germany: Springer, 2022: 189-206. [11] CHIU T Y, GURARI D. Line search-based feature transformation for fast, stable, and tunable content-style control in photorealistic style transfer[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE Press, 2023: 249-258. [12] YOO J, UH Y, CHUN S, et al. Photorealistic style transfer via wavelet transforms[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea: IEEE Press, 2019: 9035-9044. [13] AN J, XIONG H Y, HUAN J, et al. Ultrafast photorealistic style transfer via neural architecture search[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S. l.]: AAAI Press, 2020: 10443-10450. [14] CHIU T Y, GURARI D. PhotoWCT2: compact autoencoder for photorealistic style transfer resulting from blockwise training and skip connections of high-frequency residuals[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE Press, 2022: 2978-2987. [15] AN J, LI T, HUANG H Z, et al. Is bigger always better? An empirical study on efficient architectures for style transfer and beyond[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE Press, 2023: 4073-4083. [16] 吕文锐, 普园媛, 赵征鹏, 等. 基于字形约束和注意力的艺术字体风格迁移[J]. 计算机工程, 2024, 50(12): 306-317. LV W R, PU Y Y, ZHAO Z P, et al. Artistic font style transfer based on glyph constraints and attention[J]. Computer Engineering, 2024, 50(12): 306-317. (in Chinese) [17] PARK D Y, LEE K H. Arbitrary style transfer with style-attentional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 5873-5881. [18] LIU S H, LIN T W, HE D L, et al. AdaAttN: revisit attention mechanism in arbitrary neural style transfer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE Press, 2021: 6629-6638. [19] ZHU M R, HE X, WANG N N, et al. All-to-key attention for arbitrary style transfer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE Press, 2023: 23052-23062. [20] HONG K, JEON S, LEE J, et al. AesPA-Net: aesthetic pattern-aware style transfer networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE Press, 2023: 22701-22710. [21] GE B, HU Z S, XIA C X, et al. Arbitrary style transfer method with attentional feature distribution matching[J]. Multimedia Systems, 2024, 30(2): 96. [22] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of ECCV 2018. Berlin, Germany: Springer, 2018: 122-138. [23] HU J, SHEN L, SUN G. Squeeze-and-Excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE Press, 2018: 7132-7141. [24] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of ECCV 2014. Berlin, Germany: Springer, 2014: 740-755. [25] MA Y N, ZHAO C Q, BASU A, et al. RAST: restorable arbitrary style transfer via multi-restoration[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE Press, 2023: 331-340. |