1 |
BRANDL S J, RASHER D B, CÔTÉ I M, et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Frontiers in Ecology and the Environment, 2019, 17(8): 445- 454.
doi: 10.1002/fee.2088
|
2 |
MOBERG F, RÖNNBÄCK P. Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean & Coastal Management, 2003, 46(1/2): 27- 46.
|
3 |
CAPILI E B, IBAY A C S, VILLARIN J R T. Climate change impacts and adaptation on Philippine coasts[C]//Proceedings of OCEANS'05. Washington D. C., USA: IEEE Press, 2006: 2299-2306.
|
4 |
|
5 |
BELLWOOD D R, HUGHES T P, FOLKE C, et al. Confronting the coral reef crisis. Nature, 2004, 429(6994): 827- 833.
doi: 10.1038/nature02691
|
6 |
GLYNN P W. Coral reef bleaching: facts, hypotheses and implications. Global Change Biology, 1996, 2(6): 495- 509.
doi: 10.1111/j.1365-2486.1996.tb00063.x
|
7 |
潘艳丽, 唐丹玲. 卫星遥感珊瑚礁白化概述. 生态学报, 2009, 29(9): 5076- 5080.
URL
|
|
PAN Y L, TANG D L. General introduction to satellite remote sensing of coral reef bleaching. Acta Ecologica Sinica, 2009, 29(9): 5076- 5080.
URL
|
8 |
YANG J, HE Y H, CASPERSEN J. A self-adapted threshold-based region merging method for remote sensing image segmentation[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Washington D. C., USA: IEEE Press, 2016: 6320-6323.
|
9 |
KABIRI K, REZAI H, MORADI M. Mapping of the corals around Hendorabi island (Persian Gulf), using WorldView-2 standard imagery coupled with field observations. Marine Pollution Bulletin, 2018, 129(1): 266- 274.
doi: 10.1016/j.marpolbul.2018.02.045
|
10 |
李永丽, 王浩, 金喜子. 基于随机森林优化的自组织神经网络算法. 吉林大学学报(理学版), 2021, 59(2): 351- 358.
URL
|
|
LI Y L, WANG H, JIN X Z. Self-organizing neural network algorithm based on random forest optimization. Journal of Jilin University(Science Edition), 2021, 59(2): 351- 358.
URL
|
11 |
胡蕾秋, 刘亚岚, 任玉环, 等. SPOT5多光谱图像对南沙珊瑚礁信息提取方法的探讨. 遥感技术与应用, 2010, 25(4): 493- 501.
URL
|
|
HU L Q, LIU Y L, REN Y H, et al. Research on the extraction method of coral reef at spratly islands using SPOT5. Remote Sensing Technology and Application, 2010, 25(4): 493- 501.
URL
|
12 |
LEON J, WOODROFFE C D. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. International Journal of Geographical Information Science, 2011, 25(6): 949- 969.
doi: 10.1080/13658816.2010.513980
|
13 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683
|
14 |
|
15 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision. Washington D. C., USA: IEEE Press, 2016: 565-571.
|
16 |
ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[EB/OL]. [2022-09-05]. https://arxiv.org/abs/1807.10165.
|
17 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. [2022-09-05]. https://arxiv.org/abs/1802.02611.
|
18 |
LIU Y J, LI X F, REN Y B. A deep learning model for oceanic mesoscale eddy detection based on multi-source remote sensing imagery[C]//Proceedings of IGARSS'20. Washington D. C., USA: IEEE Press, 2021: 6762-6765.
|
19 |
GUO M Q, LIU H, XU Y Y, et al. Building extraction based on U-Net with an attention block and multiple losses. Remote Sensing, 2020, 12(9): 1400.
doi: 10.3390/rs12091400
|
20 |
LU X Y, ZHONG Y F, ZHENG Z, et al. Multi-scale and multi-task deep learning framework for automatic road extraction. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9362- 9377.
doi: 10.1109/TGRS.2019.2926397
|
21 |
GOMES R, ROZARIO P, ADHIKARI N. Deep learning optimization in remote sensing image segmentation using dilated convolutions and ShuffleNet[C]//Proceedings of IEEE International Conference on Electro Information Technology. Washington D. C., USA: IEEE Press, 2021: 244-249.
|
22 |
何红术, 黄晓霞, 李红旮, 等. 基于改进U-Net网络的高分遥感影像水体提取. 地球信息科学学报, 2020, 22(10): 2010- 2022.
URL
|
|
HE H S, HUANG X X, LI H G, et al. Water body extraction of high resolution remote sensing image based on improved U-Net network. Journal of Geo-Information Science, 2020, 22(10): 2010- 2022.
URL
|
23 |
赫晓慧, 宋定君, 李盼乐, 等. 融合多尺度特征的遥感影像道路提取方法. 计算机工程, 2022, 48(8): 196- 205.
URL
|
|
HE X H, SONG D J, LI P L, et al. Remote sensing image road extraction method combined with multi-scale features. Computer Engineering, 2022, 48(8): 196- 205.
URL
|
24 |
胥智杰, 杨小兵, 何灵敏, 等. 多尺度遥感语义分割网络. 计算机工程与应用, 2020, 56(21): 210- 217.
URL
|
|
XU Z J, YANG X B, HE L M, et al. Multiscale remote sensing semantic segmentation network. Computer Engineering and Applications, 2020, 56(21): 210- 217.
URL
|
25 |
沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取. 自然资源遥感, 2022, 34(4): 129- 135.
URL
|
|
SHEN J A, MA M T, SONG Z Y, et al. High resolution remote sensing water classification based on deep learning semantic segmentation model. Remote Sensing for Natural Resources, 2022, 34(4): 129- 135.
URL
|
26 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
27 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. New York, USA: ACM Press, 2018: 3-19.
|
28 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
29 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
30 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15, 1929- 1958.
|
31 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2015: 448-456.
|