1 |
MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark. IEEE Transactions on Medical Imaging, 2015, 34(10): 1993- 2024.
doi: 10.1109/TMI.2014.2377694
|
2 |
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology, 2021, 23(8): 1231- 1251.
doi: 10.1093/neuonc/noab106
|
3 |
国家卫生健康委员会医政医管局. 脑胶质瘤诊疗规范(2018年版). 中华神经外科杂志, 2019, 35(3): 217- 239.
doi: 10.3760/cma.j.issn.1001-2346.2019.03.001
|
|
National Health Commission Medical Administration. Guidelines for the diagnosis and treatment of glioma (2018 edition). Chinese Journal of Neurosurgery, 2019, 35(3): 217- 239.
doi: 10.3760/cma.j.issn.1001-2346.2019.03.001
|
4 |
WADHWA A, BHARDWAJ A, SINGH VERMA V. A review on brain tumor segmentation of MRI images. Magnetic Resonance Imaging, 2019, 61, 247- 259.
doi: 10.1016/j.mri.2019.05.043
|
5 |
WANG G T, LI W Q, OURSELIN S, et al. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Frontiers in Computational Neuroscience, 2019, 13, 56.
doi: 10.3389/fncom.2019.00056
|
6 |
BEN NACEUR M, SAOULI R, AKIL M, et al. Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Computer Methods and Programs in Biomedicine, 2018, 166, 39- 49.
doi: 10.1016/j.cmpb.2018.09.007
|
7 |
LIU Z H, TONG L, CHEN L, et al. Deep learning based brain tumor segmentation: a survey. Complex and Intelligent Systems, 2023, 9, 1001- 1026.
doi: 10.1007/s40747-022-00815-5
|
8 |
BAUER S, SEILER C, BARDYN T, et al. Atlas-based segmentation of brain tumor images using a Markov random field-based tumor growth model and non-rigid registration[C]//Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology. Washington D. C., USA: IEEE Press, 2010: 4080-4083.
|
9 |
LEFKOVITS L, LEFKOVITS S, SZILÁGYI L. Brain tumor segmentation with optimized random forest[M]//GRIMI A, MENZE B, MAIER O, et al. Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Berlin, Germany: Springer, 2016: 88-99.
|
10 |
WU W, CHEN A Y C, ZHAO L, et al. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 241- 253.
doi: 10.1007/s11548-013-0922-7
|
11 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference Munich. Berlin, Germany: Springer, 2015: 234-241.
|
12 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
13 |
ZHOU Z W, SIDDIQUEE R M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis. Berlin, Germany: Springer, 2018: 1-10.
|
14 |
LI X M, CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663- 2674.
doi: 10.1109/TMI.2018.2845918
|
15 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2261-2269.
|
16 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision (3DV). Washington D. C., USA: IEEE Press, 2016: 565-571.
|
17 |
王磐, 强彦, 杨晓棠, 等. 基于双注意力3D-UNet的肺结节分割网络模型. 计算机工程, 2021, 47(2): 307- 313.
doi: 10.19678/j.issn.1000-3428.0057019
|
|
WANG P, QIANG Y, YANG X T, et al. Network model for lung nodule segmentation based on double attention 3D-UNet. Computer Engineering, 2021, 47(2): 307- 313.
doi: 10.19678/j.issn.1000-3428.0057019
|
18 |
TIAN Z, HE T, SHEN C H, et al. Decoders matter for semantic segmentation: data-dependent decoding enables flexible feature aggregation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3121-3130.
|
19 |
ZHONG Z Q, HE L A, CHEN C X, et al. Full-scale attention network for automated organ segmentation on head and neck CT and MR images. IET Image Processing, 2023, 17(3): 660- 673.
doi: 10.1049/ipr2.12663
|
20 |
曹加旺, 田维维, 刘学玲, 等. 基于改进U-Net的人脑黑质致密部分割. 计算机工程, 2022, 48(11): 14-21, 29.
URL
|
|
CAO J W, TIAN W W, LIU X L, et al. Dense partial segmentation of substantia nigra of human brain based on improved U-Net. Computer Engineering, 2022, 48(11): 14-21, 29.
URL
|
21 |
|
22 |
郝华颖, 赵昆, 苏攀, 等. 一种基于改进ResU-Net的角膜神经分割算法. 计算机工程, 2021, 47(1): 217- 223.
URL
|
|
HAO H Y, ZHAO K, SU P, et al. A corneal nerve segmentation algorithm based on improved ResU-Net. Computer Engineering, 2021, 47(1): 217- 223.
URL
|
23 |
KAUL C, MANANDHAR S, PEARS N. FocusNet: an attention-based fully convolutional network for medical image segmentation[C]//Proceedings of the 16th International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2019: 455-458.
|
24 |
WANG C Y, HE Y, LIU Y F, et al. ScleraSegNet: an improved U-Net model with attention for accurate sclera segmentation[C]//Proceedings of International Conference on Biometrics. Washington D. C., USA: IEEE Press, 2019: 1-8.
|
25 |
SAAD N M, ABU-BAKAR S, MUDA S, et al. Fully automated region growing segmentation of brain lesion in diffusion-weighted MRI. IAENG International Journal of Computer Science, 2012, 39(2): 155- 164.
|
26 |
QIN X F, WU C Z, CHANG H, et al. Match feature U-Net: dynamic receptive field networks for biomedical image segmentation. Symmetry, 2020, 12(8): 1230.
doi: 10.3390/sym12081230
|
27 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2016: 424-432.
|
28 |
HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR: Transformers for 3D medical image segmentation[C]//Proceedings of the Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2022: 574-584.
|
29 |
WANG W X, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2021: 109-119.
|
30 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
31 |
WOO S, PARK J C, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
32 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13708-13717.
|