作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (10): 154-161. doi: 10.19678/j.issn.1000-3428.0066311

• 图形图像处理 • 上一篇    下一篇

基于特征融合与注意力机制的脑肿瘤分割算法

褚张晴晴1, 钟志强1,2, 颜子夜2, 战荫伟1,*   

  1. 1. 广东工业大学 计算机学院, 广州 510006
    2. 广州柏视医疗科技有限公司 临床研究部算法组, 广州 510213
  • 收稿日期:2022-11-21 出版日期:2023-10-15 发布日期:2023-10-10
  • 通讯作者: 战荫伟
  • 作者简介:

    褚张晴晴(1998—),女,硕士研究生,主研方向为医学图像处理

    钟志强,硕士研究生

    颜子夜,高级工程师、博士

  • 基金资助:
    广东省重点领域研发计划(2020B0101130019)

Brain Tumor Segmentation Algorithm Based on Feature Fusion and Attention Mechanism

Zhangqingqing CHU1, Zhiqiang ZHONG1,2, Ziye YAN2, Yinwei ZHAN1,*   

  1. 1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
    2. Clinical Research Department Algorithms Group, Perception Vision Medical Technologies Co., Ltd., Guangzhou 510213, China
  • Received:2022-11-21 Online:2023-10-15 Published:2023-10-10
  • Contact: Yinwei ZHAN

摘要:

脑肿瘤核磁共振成像(MRI)的准确分割对手术方案的制定和放疗计划具有重要意义。U-Net作为脑肿瘤分割领域应用最广泛的网络,具有较优的性能,但是存在跳跃连接中语义差距较大、MRI图像中跨通道信息利用不足的问题。为对脑肿瘤各区域进行准确分割,提出一种基于特征融合与注意力机制的改进U-Net模型FFCA-U-Net。在跳跃连接中设计特征融合模块代替U-Net中的直接拼接操作,以有效融合不同层次、不同尺度的特征信息,减小语义差距并调整感受野,增强网络对肿瘤特征的学习能力。在编码器中引入改进的三维坐标注意力机制,沿MRI图像的3个方向捕获跨通道信息,增强网络对脑肿瘤边界信息的感知能力,获得肿瘤子区域更精确的位置。此外,为快速获得肿瘤的相对位置、减少网络学习冗余,增加的掩码图像与MRI图像一起作为网络输入。在MSD数据集上的实验结果表明,FFCA-U-Net在增强肿瘤区域、非增强肿瘤区域和水肿区域的Dice系数分别为0.803 4、0.628 6和0.799 3,平均Dice为0.743 8,优于TransBTS、UNETR等其他先进网络。

关键词: 脑肿瘤, U-Net模型, 特征融合, 三维坐标注意力机制, 医学图像分割

Abstract:

The accurate segmentation of brain tumors in Magnetic Resonance Imaging(MRI)is of great significance for surgical planning and radiotherapy. U-Net, as the most widely used network in the field of brain tumor segmentation, has excellent performance; however, there are problems such as significant semantic differences in skip connections and insufficient utilization of cross channel information in MRI images. To accurately segment various regions of brain tumors, an improved U-Net model, Feature Fusion(FF)and attention mechanism FFCA-U-Net is proposed. The FF module is designed in skip connections to replace the direct splicing operation in U-Net, to effectively fuse feature information at different levels and scales, reduce semantic differences, adjust receptive fields, and enhance the network's learning ability for tumor features. An improved three-dimensional Coordinate Attention(CA)mechanism is introduced into the encoder to capture cross channel information along the three directions of the MRI image, enhancing the network's perception of brain tumor boundary information, thereby obtaining more accurate positions of tumor subregions. In addition, to readily obtain the relative position of tumors and reduce network learning redundancy, mask images are added alongside MRI images as network inputs. In the experimental results on the MSD dataset, the Dice coefficients of FFCA-U-Net in the enhanced tumor area, non-enhanced tumor area, and edema area are 0.803 4, 0.628 6, and 0.799 3, respectively, with an average Dice of 0.743 8, which is superior to those of other advanced networks such as TransBTS and UNETR.

Key words: brain tumor, U-Net model, Feature Fusion(FF), three-dimensional Coordinate Attention(CA) mechanism, medical image segmentation