摘要: 基于学习的超分辨率算法使用一个图像训练集来产生一个学习模型,运用该模型为输入的低分辨率图像创建更多的高频信息,获得比基于重建算法更好的结果。该文介绍了基于学习的超分辨率技术的相关工作、理论基础和主要算法,提出基于学习的超分辨率算法中仍需解决的关键问题,展望其在未来的研究发展方向。
关键词:
超分辨率,
马尔可夫随机场,
图像金字塔
Abstract: Learning-based super-resolution technique predicts the high-resolution images from the input low-resolution ones, through learning from a training set which consists of a large number of other high-resolution images. And the results are better than the reconstruction based super-resolution algorithms. The related work, theory and algorithms of learning-based super-resolution are illustrated. The crucial problems which need to be resolved in further work are proposed. Directions of future research are pointed.
Key words:
super-resolution,
Markov random field,
image pyramid
中图分类号:
郑丽贤;何小海;吴 炜;杨晓敏;陈 默. 基于学习的超分辨率技术[J]. 计算机工程, 2008, 34(5): 193-195.
ZHENG Li-xian; HE Xiao-hai; WU Wei; YANG Xiao-min; CHEN Mo. Learning-based Super-resolution Technique[J]. Computer Engineering, 2008, 34(5): 193-195.