摘要: 几何主动轮廓模型的能量泛函是非凸性的,导致图像分割结果依赖于曲线的初始化条件,对噪声敏感。针对该问题,提出一种全局最小值分割模型,对能量泛函进行凸性非约束改进,利用基于总变分对偶公式的快速数值化算法实现图像的分割。对合成图像和医学图像的分割结果表明,利用该模型可以准确提取出对象的边界,分割速度快,对噪声具有较好的鲁棒性。
关键词:
图像分割,
主动轮廓模型,
水平集,
总变分,
能量泛函
Abstract: Aiming at the limitations of the un-convex of energy functional in the active contour model, which makes the segmentation result sensitive to noise and the location of initial contours, a new model is proposed to make it be convex by the way of an un-constrained, and provides the fast algorithm based on the TV-norm. Experimental results on synthetic and medical images show that the proposed model can converges to a global minimum, accurately and fast segment the object, and is robust to image noise.
Key words:
image segmentation,
active contour model,
level set,
Total Variation(TV),
energy functional
中图分类号:
吴继明, 庞雄文. 一种具有去噪能力的全局最小值分割模型[J]. 计算机工程, 2012, 38(7): 188-189,192.
TUN Ji-Meng, LONG Xiong-Wen. Global Minimum Segmentation Model with Ability of Denoising[J]. Computer Engineering, 2012, 38(7): 188-189,192.