[1] LIU X B, SONG L P, LIU S, et al.A review of deep-learning-based medical image segmentation methods[J].Sustainability, 2021, 13(3):1224. [2] SOMASUNDARAM K, KALAVATHI P.Brain segmentation in magnetic resonance human head scans using multi-seeded region growing[J].The Imaging Science Journal, 2014, 62(5):273-284. [3] LI M, ZHENG X L, LUO H Y, et al.Automated segmentation of brain tissue and white matter in cryosection images from Chinese visible human dataset[J].Journal of Medical and Biological Engineering, 2014, 34(2):178-187. [4] SALMAN N H, GHAFOUR B M, HADI G M.Medical image segmentation based on edge detection techniques[J].Advances in Image and Video Processing, 2015, 3(2):16-27. [5] 杨兵, 刘晓芳, 张纠.基于深度特征聚合网络的医学图像分割[J].计算机工程, 2021, 47(4):187-196. YANG B, LIU X F, ZHANG J.Medical image segmentation based on deep feature aggregation network[J].Computer Engineering, 2021, 47(4):187-196.(in Chinese) [6] RONNEBERGER O, FISCHER P, BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [7] CICEK Ö, ABDULKADIR A, LIENKAMP S S, et al.3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//Proceedings of Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2016:424-432. [8] LONG J S, MA G Z, SONG E M, et al.Learning U-net based multi-scale features in encoding-decoding for MR image brain tissue segmentation[J].Sensors (Basel, Switzerland), 2021, 21(9):3232. [9] SUN L Y, MA W A, DING X H, et al.A 3D spatially weighted network for segmentation of brain tissue from MRI[J].IEEE Transactions on Medical Imaging, 2020, 39(4):898-909. [10] HUANG Y J, DOU Q, WANG Z X, et al.3-D RoI-aware U-Net for accurate and efficient colorectal tumor segmentation[J].IEEE Transactions on Cybernetics, 2021, 51(11):5397-5408. [11] YU J K, YANG D D, ZHAO H S.FFANet:feature fusion attention network to medical image segmentation[J].Biomedical Signal Processing and Control, 2021, 69:102912. [12] HU J, SHEN L, ALBANIE L, et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [13] WANG F, JIANG M Q, QIAN C, et al.Residual attention network for image classification[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6450-6458. [14] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [15] SUN X, GARG P, PLEIN S, et al.SAUN:stack attention U-Net for left ventricle segmentation from cardiac cine magnetic resonance imaging[J].Medical Physics, 2021, 48(4):1750-1763. [16] YANG T X, YOSHIMURA Y, MORITA A, et al.Synergistic attention U-Net for sublingual vein segmentation[J].Artificial Life and Robotics, 2019, 24(4):550-559. [17] KAUL C, MANANDHAR S, PEARS N.FocusNet:an attention-based fully convolutional network for medical image segmentation[C]//Proceedings of the 16th International Symposium on Biomedical Imaging.Washington D.C., USA:IEEE Press, 2019:455-458. [18] 魏颖, 雷志浩, 齐林.基于注意力机制的3D U-Net婴幼儿脑组织MR图像分割[J].东北大学学报(自然科学版), 2021, 42(5):616-623. WEI Y, LEI Z H, QI L.3D U-Net infant brain tissue MR image segmentation based on attention mechanism[J].Journal of Northeastern University(Natural Science), 2021, 42(5):616-623.(in Chinese) [19] MA C, LUO G N, WANG K Q.Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images[J].IEEE Transactions on Medical Imaging, 2018, 37(8):1943-1954. [20] ZHOU T X, RUAN S, CANU S.A review:deep learning for medical image segmentation using multi-modality fusion[J].Array, 2019(3/4):100004. [21] DOLZ J, DESROSIERS C, BEN AYED I.IVD-Net:intervertebral disc localization and segmentation in MRI with a multi-modal UNet[C]//Proceedings of Computational Methods and Clinical Applications for Spine Imaging.Berlin, Germany:Springer, 2019:130-143. [22] KAMNITSAS K, BAI W, FERRANTE E, et al.Ensembles of multiple models and architectures for robust brain tumour segmentation[C]//Proceedings of International MICCAI Brainlesion Workshop.Berlin, Germany:Springer, 2017:450-462. [23] KAMNITSAS K, LEDIG C, NEWCOMBE V F J, et al.Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J].Medical Image Analysis, 2017, 36:61-78. [24] DOLZ J, GOPINATH K, YUAN J, et al.HyperDense-Net:a hyper-densely connected CNN for multi-modal image segmentation[J].IEEE Transactions on Medical Imaging, 2019, 38(5):1116-1126. [25] LI J C, YU Z L, GU Z H, et al.MMAN:multi-modality aggregation network for brain segmentation from MR images[J].Neurocomputing, 2019, 358:10-19. [26] ZHANG Z X, LIU Q J, WANG Y H.Road extraction by deep residual U-net[J].IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):749-753. [27] CAHALL D E, RASOOL G, BOUAYNAYA N C, et al.Inception modules enhance brain tumor segmentation[J].Frontiers in Computational Neuroscience, 2019, 13:44. [28] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [29] GHOSAL P, CHOWDHURY T, KUMAR A, et al.MhURI:a supervised segmentation approach to leverage salient brain tissues in magnetic resonance images[J].Computer Methods and Programs in Biomedicine, 2021, 200:1-15. |