作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2014, Vol. 40 ›› Issue (12): 39-44. doi: 10.3969/j.issn.1000-3428.2014.12.007

• 先进计算与数据处理 • 上一篇    下一篇

一种无位置偏见的广告协同推荐算法

霍晓骏,贺樑,杨燕   

  1. 华东师范大学信息科学与技术学院,上海 200241
  • 收稿日期:2013-12-11 修回日期:2014-02-10 出版日期:2014-12-15 发布日期:2015-01-16
  • 作者简介:霍晓骏(1988-),男,硕士研究生,主研方向:协同推荐;贺 樑,教授;杨 燕,博士。
  • 基金资助:

    国家科技支撑计划基金资助项目(2012BAH74F02);上海市科委基金资助重大项目(12dz1500205)。

An Advertisement Collaborative Recommendation Algorithm Without Position Bias

HUO Xiaojun,HE Liang,YANG Yan   

  1. College of Computer Science and Technology,East China Normal University,Shanghai 200241,China
  • Received:2013-12-11 Revised:2014-02-10 Online:2014-12-15 Published:2015-01-16

摘要:

在广告推荐系统中,页面与广告的相关性是用户是否点击广告的重要因素,一般利用点击率计算相关性,但是广告展示位置的不同会影响页面-广告相关性计算的准确性,从而导致相关性低的广告被当成相关性高的广告进行错误推荐。针对该问题,提出一种无位置偏见的广告协同推荐算法。利用贝叶斯定理改进位置模型,排除历史数据中的位置影响,计算页面-广告相关性。通过协同过滤技术,为页面找到与其相似的其他邻居页面,实现准确的广告推荐。在腾讯搜搜广告日志数据上进行实验,结果表明,与传统协同过滤算法相比,该算法的推荐准确率、召回率以及F度量值均提高了40%以上,具有较好的广告推荐效果。

关键词: 广告推荐, 位置偏见, 协同过滤, 点击率, 相关性计算

Abstract:

In an advertisement recommendation system,an advertisement which has a low relevance with the query has a high Click-through Rate(CTR) because of the high position where it is shown.Advertisement-query relevance which attracts users to click advertisement plays an important role at advertisement recommendation,and a wrong relevance,for example,CTR with position bias,may lead to a bad recommendation to user and loss of interest.Aiming at these problems,this paper proposes an advertisement collaborative recommendation algorithm without position bias.It finds similar page with other neighbors page by collaborative filtering technology to realize accurate advertising recommended.An experiment on tencent soso data about advertisement logs shows that this algorithm has a better recommendation result(at least 40% higher) of higher recall,precision and F-measure than baseline traditional Collaborative Filtering(CF) algorithm without the effect of position bias,and it has good advertising recommendation effect.

Key words: advertisement recommendation, position bias, collaborative filtering, Click-through Rate(CTR), correlation calculation

中图分类号: