[1] PAN J W,XU J,RUIZ A L,et al.Field-weighted factorization machines for click-through rate prediction in display advertising[C]//Proceedings of 2018 World Wide Web Conference.New York,USA:ACM Press,2018:16-28. [2] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[EB/OL].[2019-10-20].https://arxiv.org/abs/1512.03385. [3] DENG Lujia,LIU Pingshan.Research on click-through rate prediction of advertisement based on GMM-FMs[J]. Computer Engineering,2019,45(5):122-126.(in Chinese)邓路佳,刘平山.基于GMM-FMs的广告点击率预测研究[J].计算机工程,2019,45(5):122-126. [4] CHEN Junxuan,SUN Baigui,LI Hao,et al.Deep CTR prediction in display advertising[C]//Proceedings of 2016 ACM Multimedia Conference.New York,USA:ACM Press,2016:158-169. [5] CHEN Jiehao,LI Xueyi,ZHAO Ziqian,et al.A CTR prediction method based on feature engineering and online learning[C]//Proceedings of 2017 International Symposium on Communica-tions and Information Technologies.Washington D.C.,USA:IEEE Press,2017:190-203. [6] JIN Ziyan,ZHANG Juan,LI Xiangjun,et al.A collaborative filtering advertising recommendation algorithm with tag[J].Computer Engineering,2018,44(4):236-242,247.(in Chinese)金紫嫣,张娟,李向军,等.一种带标签的协同过滤广告推荐算法[J].计算机工程,2018,44(4):236-242,247. [7] CHENG H T,KOC L,HARMSEN J,et al.Wide & Deep learning for recommender systems[EB/OL].[2019-10-20].https://arxiv.org/abs/1606.07792. [8] GUO Huifeng,TANG Ruiming,YE Yunming,et al.DeepFM:a factorization-machine based neural network for CTR prediction[EB/OL].[2019-10-20].https://arxiv.org/abs/1703.04247. [9] LIU Enbo.Boosting-based method for advertising conversion rate prediction[D].Harbin:Harbin Institute of Technology,2018.(in Chinese)刘恩伯.基于提升模型的广告转化率预估[D].哈尔滨:哈尔滨工业大学,2018. [10] ZHENG L,NOROOZI V,YU P.Joint deep modeling of users and items using reviews for recommendation[EB/OL].[2019-10-20].https://arxiv.org/abs/1701.04783. [11] ZHENG Y,ZHANG Y J,LAROCHELLE H.A deep and autoregressive approach for topic modeling of multimodal data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(6):1056-1069. [12] WU C Y,AHMED A,BEUTEL A,et al.Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2017:15-26. [13] WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-N recommender systems[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining.New York,USA:ACM Press,2016:125-136. [14] ZHOU Hao,HUANG Minlie,MAO Yishun,et al.Domain-constrained advertising keyword generation[EB/OL].[2019-10-20].https://arxiv.org/abs/1902.10374. [15] KAN S C,CEN Y G,HE Z H,et al.Supervised deep feature embedding with handcrafted feature[J].IEEE Transactions on Image Processing,2019,28(12):5809-5823. [16] CHOROWSKI J,BAHDANAU D,SERDYUK D,et al.Attention-based models for speech recognition[J].Computer Science,2015,10(4):429-439. [17] SPECHT D F.Probabilistic neural networks[J].Neural Networks,1990,3(1):109-118. [18] LIU Tong.Research on software defect prediction based on machine learning algorithm[D].Wuhan:Central China Normal University,2018.(in Chinese)刘童.基于机器学习算法的软件缺陷预测技术研究[D].武汉:华中师范大学,2018. [19] SUN Yi,LIU Di,LI Bin,et al.Application of deep reinforcement learning in demand response[J].Automation of Electric Power Systems,2019,43(5):183-191.(in Chinese)孙毅,刘迪,李彬,等.深度强化学习在需求响应中的应用[J].电力系统自动化,2019,43(5):183-191. [20] KADAM V J,JADHAV S M,VIJAYAKUMAR K.Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression[J].Journal of Medical Systems,2019,43(8):263-265. [21] RIAHI-MADVAR H,DEHGHANI M,SEIFI A,et al.Comparative analysis of soft computing techniques RBF,MLP,and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry[J].Engineering Applications of Computational Fluid Mechanics,2019,13(1):529-550. [22] SHAN Y,HOENS T R,JIAO J,et al.Deep crossing:Web-scale modeling without manually crafted combinatorial features[C]//Proceedings of the 22nd ACM SIGKDD International Conference.New York,USA:ACM Press,2016:12-25. [23] MO S X,ZHU Y H,ZABARAS N,et al.Deep convolutional encoder-decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media[J].Water Resources Research,2019,55(1):703-728. [24] ACHKAR R,ELIAS-SLEIMAN F,EZZIDINE H,et al.Comparison of BPA-MLP and LSTM-RNN for stocks prediction[C]//Proceedings of 2018 International Symposium on Computational and Business Intelligence.Washington D.C.,USA:IEEE Press,2018:125-136. [25] ZHANG Ce,PAN Xin,LI Huapeng,et al.A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,140:133-144. [26] WANG Yi,GAN Dahua,ZHANG Ning,et al.Feature selection for probabilistic load forecasting via sparse penalized quantile regression[J].Journal of Modern Power Systems and Clean Energy,2019,7(5):1200-1209. [27] HAN B,TSANG I W,CHEN L,et al.Progressive stochastic learning for noisy labels[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(10):5136-5148. [28] LO H Z,COHEN J P,DING W.Prediction gradients for feature extraction and analysis from convolutional neural networks[C]//Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition.Washington D.C.,USA:IEEE Press,2015:20-26. [29] HASSNA G,LOWRY P B.Big data capability,customer agility,and organization performance:a dynamic capability perspective[EB/OL].[2019-10-20].https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2861423. [30] LU Haofang,ZHOU Ying,ZHANG Zike.Calculate deep convolution neural network on cell unit[M].Berlin,Germany:Springer,2017. [31] JACKSON F,AMIN R,FU Y H,et al.A user study of Netflix streaming[M].Berlin,Germany:Springer,2015. [32] LAZLI L,BOUKADOUM M,MOHAMED O A.HMM/MLP speech recognition system using a novel data clustering approach[C]//Proceedings of 2017 IEEE Canadian Conference on Electrical and Computer Engineering.Washington D.C.,USA:IEEE Press,2017:145-163. [33] SALLAB A,ABDOU M,PEROT E,et al.Deep reinforcement learning framework for autonomous driving[J].Electronic Imaging,2017(19):70-76. [34] QURESHI A H,NAKAMURA Y,YOSHIKAWA Y,et al.Show,attend and interact:perceivable human-robot social interaction through neural attention Q-network[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2017:456-485. |