作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2007, Vol. 33 ›› Issue (07): 166-168.

• 安全技术 • 上一篇    下一篇

一种高效异常检测方法

蒋盛益1,2,姜灵敏1   

  1. (1. 广东外语外贸大学信息学院,广州 510420;2. 中山大学广东省信息安全技术重点实验室,广州 510275)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-04-05 发布日期:2007-04-05

Approach of Efficient Outlier Detection

JIANG Shengyi1,2, JIANG Lingmin1   

  1. (1. School of Information, Guangdong University of Foreign Studies, Guangzhou 510420; 2. Guangdong Province Key Laboratory of Information Security, Sun Yat-sen University, Guangzhou 510275)
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-04-05 Published:2007-04-05

摘要: 借鉴万有引力思想提出了一种差异性度量方法和度量类偏离程度的方法,以此为基础提出了一种基于聚类的异常检测方法。该异常检测方法关于数据集大小和属性个数具有近似线性时间复杂度,适合于大规模数据集。理论分析以及在真实数据集上的实验结果表明,该方法是有效的,稳健并且实用。

关键词: 聚类, 异常因子, 异常检测

Abstract: Based on the idea of the law of gravity, the method measuring dissimilarity and the method measuring a cluster departure from the whole are presented. Based on these, an outlier detection approach based on clustering, named EOD, is introduced. The time complexity of the detection approach is nearly linear with the size of dataset and the number of attributes, which results in good scalability and adapts to large dataset. The theoretic analysis and the experimental results on real datasets show that the approach is effective, robust and practicable.

Key words: Clustering, Outlier factor, Outlier detection

中图分类号: