作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (22): 171-175. doi: 10.3969/j.issn.1000-3428.2012.22.042

• 人工智能及识别技术 • 上一篇    下一篇

结合语义与统计的特征降维短文本聚类

杨婉霞 1,2,孙理和 3,黄永峰 2   

  1. (1. 甘肃农业大学工学院,兰州 730070;2. 清华大学电子工程系,北京 100084;3. 西北师范大学外国语学院,兰州 730070)
  • 收稿日期:2012-06-14 修回日期:2012-09-12 出版日期:2012-11-20 发布日期:2012-11-17
  • 作者简介:杨婉霞(1979-),女,讲师、硕士研究生,主研方向:信息处理,机器学习;孙理和,讲师、硕士;黄永峰,副教授、博士
  • 基金资助:
    国家“863”计划基金资助项目(2011AA010704, 2012AA011004);清华大学自主科研基金资助项目“跨媒体分布式垂直搜索及舆情分析的关键技术”(20111081023)

Feature Dimension Reduction Short Text Clustering Combined with Semantic and Statistics

YANG Wan-xia 1,2, SUN Li-he 3, HUANG Yong-feng 2   

  1. (1. College of Technology, Gansu Agricultural University, Lanzhou 730070, China; 2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; 3. College of Foreign Languages and Literature, Northwest Normal University, Lanzhou 730070, China)
  • Received:2012-06-14 Revised:2012-09-12 Online:2012-11-20 Published:2012-11-17

摘要: 为解决文本聚类时文本的高维稀疏性问题,提出一种语义和统计特征相结合的短文本聚类算法。该算法通过语义词典对词汇的语义相关性分析实现一次降维,结合统计方法进行特征选择实现二次降维,并融合二次降维特征实现短文本聚类。实验结果表明,该算法具有较好的短文本聚类效果和效率。

关键词: 特征选择, 聚类, 短文本, 向量空间模型, 语义, 降维

Abstract: The primary difficulty of text clustering lies in the multi-dimensional sparseness of texts. A short text clustering algorithm which takes semantic and statistic features into account is proposed. A dimensionality reduction is achieved via the semantic relativity analysis of lexical semantics by semantic dictionary. The second dimension reduction is completed after a feature selection through statistical methods. The short text clustering is obtained with the combination of the two reductions. Experimental result shows that the algorithm has better clustering effect and efficiency on short text.

Key words: feature selection, clustering, short text, Vector Space Model(VSM), semantic, dimension reduction

中图分类号: