[1] Hotho A, Maedche A, Staab S. Ontologies Improve Text Document Clustering[C]//Proc. of the IEEE International Conference on Data Mining. Melbourne, Australia: [s. n.], 2003: 541-544. [2] Choudhary B, Bhattacharyya P. Text Clustering Using Semantics[C]// Proc. of the 11th International World Wide Web Conference. Hawaii, USA: [s. n.], 2002. [3] 赵 鹏, 耿焕同, 蔡庆生. 一种基于语义和统计特征的中文文本特征表示方法[J]. 小型微型计算机系统, 2007, 28(7): 1311- 1313. [4] 谭松波, 王月粉. 中文文本分类语料库——TanCorp V1.0[EB/OL]. (2010-05-18). http://www.searchforum.org.cn/tansongbo/corpus. htm. [5] Rogati M, Yang Yiming. High-performing Feature Selection for Text Classification[C]//Proc. of the 11th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2002: 659-661. [6] Makrehchi M, Kamel M S. Text Classification Using Small Number of Features[C]//Proc. of the 4th International Conference on Machine Learning and Data Mining in Pattern Recognition. [S. l.]: ACM Press, 2005: 580-589 [7] Mladenic D, Brank J, Grobelnik M, et al. Feature Selection Using Linear Classifier Weights: Interaction with Classification Models[C]//Proc. of the 27th ACM International Conference on Research and Development in Information Retrieval. [S. l.]: ACM Press, 2004: 234-241. [8] 王 博. 文本分类中特征选择技术研究[M]. 长沙: 国防科学技术大学, 2009. [9] 陈 彬, 洪家荣, 王亚东. 最优特征子集选择问题[J]. 计算机学报, 1997, 20(2): 133-138. [10] 陈 友, 程学旗, 李 洋, 等. 基于特征选择的轻量级入侵检测系统[J]. 软件学报, 2007, 18(7): 1639-1651. [11] Zhang Lijuan, Li Zhoujun, Chen Huowang. An Effective Gene Selection Method Based on Relevance Analysis and Discernibility Matrix[C]//Proc. of the 11th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer-Verlag, 2007: 1088-1095. [12] 陈文亮, 朱靖波, 朱慕华. 基于领域词典的文本特征表示[J]. 计算机研究与发展, 2005, 42(12): 2155-2160. [13] 吕震宇, 林永民, 赵 爽, 等. 基于同义词词林的文本特征选择与加权研究[J]. 情报杂志, 2008, 27(5): 130-132. [14] Metzler D, Dumais S, Meek C. Similarity Measures for Short Segments of Text[C]//Proc. of the 29th European Conference in Information Retrieval Research. Rome, Italy: Springer-Verlag, 2007: 16-27. [15] Peng Tao, Zuo Wanli, He Fengling. SVM Based Adaptive Learning Method for Text Classification from Positive and Unlabeled Documents[J]. Journal of Knowledge and Information Systems, 2008, 16(3): 961-976. [16] Phan X H, Nguyen L M, Horiguchi S. Learning to Classify Short and Sparse Text & Web with Hidden Topics from Large-scale Data Collections[C]//Proc. of the 17th International Conference on World Wide Web. New York, USA: ACM Press, 2008: 91-100.
|