[1] BIAN Zhaofeng,ZHANG Xuegong.Pattern recognition[M].Beijing:Tsinghua University Press,2000.(in Chinese)边肇琪,张学工.模式识别[M].北京:清华大学出版社,2000. [2] BENGIO Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-55. [3] YU Kai,JIA Lei,CHEN Yuqiang.Yesterday,today and tomorrow of deep learning[J].Computer Research and Development.2013,50(9):1799-1804.(in Chinese)余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. [4] TSUNG-YI L,PRIYA G,ROSS G,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(1):318-327. [5] WEI L,DRAGOMIR A,DUMITRU E,et al.SSD:single shot multibox detector[EB/OL].[2020-01-10].https://arxiv.org/pdf/1512.02325.pdf. [6] JOESPH R,ALI F.YOLOv3:an incremental improvement[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1804.02767. [7] ALEXER B,WANG C Y,HONG-YUAN M L.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:2004.10934. [8] REN S Q,HE K M,ROSS G,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [9] TIAN Zhi,SHEN Chunhua,CHEN Hao,et al.FCOS:fully convolutional one-stage object detection[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1904.01355. [10] LAW H,DENG J.CornerNet:detecting objects as paired keypoints[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1808.01244. [11] DUAN Kaiwen,BAI Song,XIE Lingxi,et al.CenterNet:keypoint triplets for object detection[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1904.08189. [12] TSUNG-YI L,PIOTR D,ROSS G,et al.Feature pyramid networks for object detection[EB/OL].[2020-01-10].https://arxiv.org/pdf/1612.03144.pdf. [13] JONATHAN L,EVAN S,TREVOR D.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):1-8. [14] TIAN Zhi,HE Tong,SHEN Chunhua,et al.Decoders matter for semantic segmentation:data-dependent decoding enables flexible feature aggregation[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:1023-1028. [15] HE Tong,SHNE Chunhua,TIAN Zhi,et al.Knowledge adaptation for efficient semantic segmentation[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:1039-1046. [16] YIN Wei,LIU Yifan,SHEN Chunhua,et al.Enforcing geometric constraints of virtual normal for depth prediction[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2019:1088-1096. [17] CAO Z,STOMAS S,SHIH-EN W,et al.Realtime multi-person 2D pose estimation using part affinity fields[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1611.08050. [18] WANG Xinlong,ZHANG Rufeng,KONG Tao,et al.SOLOv2:dynamic and fast instance segmentation[C]//Proceedings of Advances in Neural Information Processing Systems[2020-03-23].https://arxiv.org/abs/arXiv:2003. 10152. [19] ALEXANGER K,HE K M,ROSS G,et al.Panoptic segmentation[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1801.00868. [20] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:1-47. [21] HUANG G,LIU Z,LAURENS M,et al.Densely connected convolutional networks[EB/OL].[2020-01-10].https://arxiv.org/abs/arXiv:1608.06993. |