[1] 张一飞, 李新福, 田学东.融合边缘特征的SAD立体匹配算法[J].计算机工程, 2020, 46(4):236-240, 246. ZHANG Y F, LI X F, TIAN X D.SAD stereo matching algorithm combining edge features[J].Computer Engineering, 2020, 46(4):236-240, 246.(in Chinese) [2] 赵晨园, 李文新, 张庆熙.一种改进的实时半全局立体匹配算法及硬件实现[J].计算机工程, 2021, 47(9):162-170. ZHAO C Y, LI W X, ZHANG Q X.An improved real-time semi-global stereo matching algorithm and its hardware implementation[J].Computer Engineering, 2021, 47(9):162-170.(in Chinese) [3] 黄彬, 胡立坤, 张宇.基于自适应权重的改进Census立体匹配算法[J].计算机工程, 2021, 47(5):189-196. HUANG B, HU L K, ZHANG Y.Improved census stereo matching algorithm based on adaptive weight[J].Computer Engineering, 2021, 47(5):189-196.(in Chinese) [4] MAYER N, ILG E, HÄUSSER P, et al.A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:4040-4048. [5] ALEX K, HAYK M, SAUMITRO S, et al.End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:66-75. [6] CHANG J R, CHEN Y S.Pyramid stereo matching network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:5410-5418. [7] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[EB/OL].[2022-01-09].https://arxiv.org/pdf/1406.4729.pdf. [8] ZHANG F H, PRISACARIU V, YANG R G, et al.GA-Net:guided aggregation net for end-to-end stereo matching[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA.IEEE Press, 2019:185-194. [9] XU H F, ZHANG J Y.AANet:adaptive aggregation network for efficient stereo matching[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1956-1965. [10] XU B, XU Y H, YANG X L, et al.Bilateral grid learning for stereo matching networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:12492-12501. [11] CHEN J W, SYLVAIN P, FREDO D.Real-time edge-aware image processing with the bilateral grid[J].ACM Transactions on Graphics, 2017, 26(3):1-10. [12] ILG E, MAYER N, SAIKIA T, et al.FlowNet 2.0:evolution of optical flow estimation with deep networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1647-1655. [13] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [14] GUO C X, FAN B, ZHANG Q, et al.AugFPN:improving multi-scale feature learning for object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:12592-12601. [15] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[EB/OL].[2022-01-09].https://arxiv.org/pdf/1807.06521.pdf. [16] MA N N, ZHANG X Y, LIU M, et al.Activate or not:learning customized activation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:8028-8038. [17] ZHAO H S, SHI J P, QI X J, et al.Pyramid scene parsing network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:6230-6239. [18] ZHANG K, FANG Y Q, MIN D B, et al.Cross-scale cost aggregation for stereo matching[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:1590-1597. [19] MENZ M D, FREEMAN R D.Stereoscopic depth processing in the visual cortex:a coarse-to-fine mechanism[J].Nature Neuroscience, 2003, 6(1):59-65. [20] XU Q S, TAO W B.Multi-scale geometric consistency guided multi-view stereo[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5478-5487. [21] DAI J F, QI H Z, XIONG Y W, et al.Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:764-773. [22] GEIGER A, LENZ P, URTASUN R.Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2012:3354-3361. [23] MENZE M, GEIGER A.Object scene flow for autonomous vehicles[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2012:3061-3070. [25] WANG Q, SHI S H, ZHENG S Z, et al.FAD-Net:a fast and accurate network for disparity estimation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-7. [26] 季顺平, 罗冲, 刘瑾.基于深度学习的立体影像密集匹配方法综述[J].武汉大学学报(信息科学版), 2021, 46(2):193-202. JI S P, LUO C, LIU J.A review of dense stereo image matching methods based on deep learning[J].Geomatics and Information Science of Wuhan University, 2021, 46(2):193-202.(in Chinese) [27] 郑太雄, 黄帅, 李永福, 等.基于视觉的三维重建关键技术研究综述[J].自动化学报, 2020, 46(4):631-652. ZHENG T X, HUANG S, LI Y F, et al.Key techniques for vision based 3D reconstruction:a review[J].Acta Automatica Sinica, 2020, 46(4):631-652.(in Chinese)< |