[1] ZHU L, YU F R, WANG Y G, et al.Big data analytics in intelligent transportation systems:a survey[J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1):383-398. [2] DO L N N, TAHERIFAR N, VU H L.Survey of neural network-based models for short-term traffic state prediction[J].WIREs Data Mining and Knowledge Discovery, 2019, 9(1):1285-1309. [3] JO D, YU B, JEON H, et al.Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies[J].IEEE Transactions on Vehicular Technology, 2019, 68(2):1188-1197. [4] MA X L, TAO Z M, WANG Y H, et al.Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J].Transportation Research Part C:Emerging Technologies, 2015, 54:187-197. [5] GUO G, YUAN W.Short-term traffic speed forecasting based on graph attention temporal convolutional networks[J].Neurocomputing, 2020, 410:387-393. [6] 沈琴琴, 王玥, 黄悦, 等.改进初值的灰色Verhulst-Markov模型及其应用[J].统计与决策, 2020, 36(7):30-33. SHEN Q Q, WANG Y, HUANG Y, et al.Grey verhulst-Markov model with improved initial value and its application[J].Statistics & Decision, 2020, 36(7):30-33.(in Chinese) [7] DE MEDRANO R, AZNARTE J L.A spatio-temporal attention-based spot-forecasting framework for urban traffic prediction[J].Applied Soft Computing, 2020, 96:1-15. [8] ZHANG Z C, LI M, LIN X, et al.Multistep speed prediction on traffic networks:a deep learning approach considering spatio-temporal dependencies[J].Transportation Research Part C:Emerging Technologies, 2019, 105:297-322. [9] 杜圣东, 李天瑞, 杨燕, 等.一种基于序列到序列时空注意力学习的交通流预测模型[J].计算机研究与发展, 2020, 57(8):1715-1728. DU S D, LI T R, YANG Y, et al.A sequence-to-sequence spatial-temporal attention learning model for urban traffic flow prediction[J].Journal of Computer Research and Development, 2020, 57(8):1715-1728.(in Chinese) [10] 闫杨, 孙丽珺, 朱兰婷.基于时空相关性的短时交通流量预测方法[J].计算机工程, 2020, 46(1):31-37. YAN Y, SUN L J, ZHU L T.Short-term traffic flow prediction method based on spatiotemporal relativity[J].Computer Engineering, 2020, 46(1):31-37.(in Chinese) [11] BOGAERTS T, MASEGOSA A D, ANGARITA-ZAPATA J S, et al.A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data[J].Transportation Research Part C:Emerging Technologies, 2020, 112:62-77. [12] ZHANG K P, ZHENG L, LIU Z J, et al.A deep learning based multitask model for network-wide traffic speed prediction[J].Neurocomputing, 2020, 396:438-450. [13] YIN X, WU G, WEI J, et al.Multi-stage attention spatial-temporal graph networks for traffic prediction[J].Neurocomputing, 2021, 428:42-53. [14] 徐冰冰, 岑科廷, 黄俊杰, 等.图卷积神经网络综述[J].计算机学报, 2020, 43(5):755-780. XU B B, CEN K T, HUANG J J, et al.A survey on graph convolutional neural network[J].Chinese Journal of Computers, 2020, 43(5):755-780.(in Chinese) [15] BOUKERCHE A, WANG J H.A performance modeling and analysis of a novel vehicular traffic flow prediction system using a hybrid machine learning-based model[J].Ad Hoc Networks, 2020, 106:1-10. [16] ZHAO L, SONG Y J, ZHANG C, et al.T-GCN:a temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858. [17] CUI Z Y, HENRICKSON K, KE R M, et al.Traffic graph convolutional recurrent neural network:a deep learning framework for network-scale traffic learning and forecasting[J].IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11):4883-4894. [18] 陈喜群, 周凌霄, 曹震.基于图卷积网络的路网短时交通流预测研究[J].交通运输系统工程与信息, 2020, 20(4):49-55. CHEN X Q, ZHOU L X, CAO Z.Short-term network-wide traffic prediction based on graph convolutional network[J].Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4):49-55.(in Chinese) [19] YU B, LEE Y J, SOHN K.Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a Graph Convolutional Neural network(GCN)[J].Transportation Research Part C:Emerging Technologies, 2020, 114:189-204. [20] PAVLYUK D.Feature selection and extraction in spatiotemporal traffic forecasting:a systematic literature review[J].European Transport Research Review, 2019, 11:1-5. [21] ERMAGUN A, LEVINSON D.Spatiotemporal traffic forecasting:review and proposed directions[J].Transport Reviews, 2018, 38(6):786-814. [22] 孔繁钰, 周愉峰, 陈纲.基于时空特征挖掘的交通流量预测方法[J].计算机科学, 2019, 46(7):322-326. KONG F Y, ZHOU Y F, CHEN G.Traffic flow prediction method based on spatio-temporal feature mining[J].Computer Science, 2019, 46(7):322-326.(in Chinese) |