[1] SUN J N, GUO W, ZHANG D C, et al.A framework for recommending accurate and diverse items using Bayesian graph convolutional neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.New York, USA:ACM Press, 2020:2030-2039. [2] SUN K, QIAN T Y, CHEN T, et al.Where to go next:modeling long- and short-term user preferences for point-of-interest recommendation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:214-221. [3] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-06-11].https://arxiv.org/abs/1706.03762. [4] LIU D H, WU J, LI J, et al.Adaptive hierarchical attention-enhanced gated network integrating reviews for item recommendation[J].IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5):2076-2090. [5] MA S C, ZHU J H.Self-attention based collaborative neural network for recommendation[M]//BIAGIONI E S, ZHENG Y, CHENG S Y.Wireless algorithms, systems, and applications.Berlin, Germany:Springer, 2019:235-246. [6] CHENG C, YANG H Q, LYU M R, et al.Where you like to go next:successive point-of-interest recommendation[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2013:2605-2611. [7] PASRICHA R, McAULEY J.Translation-based factorization machines for sequential recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2018:63-71. [8] LIU L, ZHANG P.A novel recommendation algorithm with knowledge graph[J].Journal of Physics:Conference Series, 2021, 1812(1):1-10. [9] MA C, KANG P, LIU X.Hierarchical gating networks for sequential recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.NewYork, USA:ACM Press, 2019:825-833. [10] NI Y B, OU D, LIU S C, et al.Perceive your users in depth:learning universal user representations from multiple E-commerce tasks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.New York, USA:ACM Press, 2018:596-605. [11] GU Y L, DING Z Y, WANG S Q, et al.Hierarchical user profiling for E-commerce recommender systems[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.Washington D.C., USA:IEEE Press, 2020:223-231. [12] FENG Y F, LÜF Y, SHEN W C, et al.Deep session interest network for click-through rate prediction[EB/OL].[2021-06-11].https://arxiv.org/abs/1905.06482. [13] CEN Y K, ZHANG J W, ZOU X, et al.Controllable multi-interest framework for recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.New York, USA:ACM Press, 2020:2942-2951. [14] DAUPHIN Y N, FAN A, AULI M, et al.Language modeling with gated convolutional networks[EB/OL].[2021-06-11].https://arxiv.org/abs/1612.08083. [15] NING X, DESROSIERS C, KARYPIS G.A comprehensive survey of neighborhood-based recommendation methods[M]//RICCI F, ROKACH L, SHAPIRA B.Recommender systems handbook.Berlin, Germany:Springer, 2015:37-76. [16] HARPER F M, KONSTAN J A.The MovieLens datasets:history and context[J].ACM Transactions on Interactive Intelligent Systems, 2016, 5(4):19. [17] Amazon ecommerce dataset[EB/OL].[2021-06-11].http://jmcauley.ucsd.edu/data/amazon/links.html. [18] Retailrocket[EB/OL].[2021-06-11].http://www.kaggle.com/retailrocket/ecommerce-dataset. [19] LI J, REN P J, CHEN Z M, et al.Neural attentive session-based recommendation[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:1419-1428. [20] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al.Session-based recommendations with recurrent neural networks[EB/OL].[2021-06-11].https://arxiv.org/abs/1511.06939. [21] LIU Q, ZENG Y F, MOKHOSI R, et al.STAMP:short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining.New York, USA:ACM Press, 2018:1831-1839. [22] CHEN H X, SHI S Y, LI Y Q, et al.Neural collaborative reasoning[EB/OL].[2021-06-11].https://arxiv.org/abs/2005.08129. [23] KANG W C, MCAULEY J.Self-attentive sequential recommendation[C]//Proceedings of IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2018:197-206. [24] TANG J X, WANG K.Personalized top-N sequential recommendation via convolutional sequence embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2018:565-573. [25] XIAO J, YE H, HE X N, et al.Attentional factorization machines:learning the weight of feature interactions via attention networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne, Australia:[s.n.], 2017:1-10. |