| 1 | CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]//Proceedings of Asian Conference on Computer Vision. Berlin, Germany: Springer, 2017: 214-230. | 
																													
																						| 2 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 3 |  | 
																													
																						| 4 | BAI Y C, ZHANG Y Q, DING M L, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 210-226. | 
																													
																						| 5 | NA B, FOX G C. Object detection by a super-resolution method and a convolutional neural networks[C]//Proceedings of International Conference on Big Data. Washington D. C., USA: IEEE Press, 2018: 1-10. | 
																													
																						| 6 | AKYON F C, ONUR ALTINUC S, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object detection[C]//Proceedings of International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2022: 1-10. | 
																													
																						| 7 |  | 
																													
																						| 8 | SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1-10. | 
																													
																						| 9 | WOO S, HWANG S, KWEON I S. StairNet: top-down semantic aggregation for accurate one shot detection[C]//Proceedings of Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2018: 1-10. | 
																													
																						| 10 | 郑秋梅, 王璐璐, 王风华. 基于改进卷积神经网络的交通场景小目标检测. 计算机工程, 2020, 46(6): 26- 33.  URL
 | 
																													
																						|  | ZHENG Q M, WANG L L, WANG F H. Small object detection in traffic scene based on improved convolutional neural network. Computer Engineering, 2020, 46(6): 26- 33.  URL
 | 
																													
																						| 11 | 戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测. 计算机工程, 2023, 49(1): 41- 48.  URL
 | 
																													
																						|  | QI L L, GAO J L. Small target detection based on improved YOLOv7. Computer Engineering, 2023, 49(1): 41- 48.  URL
 | 
																													
																						| 12 | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 13 | LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//Proceedings of International Conference on Artificial Intelligence in Information and Communication. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 14 | HAN J M, DING J A, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 15 | YU D H, XU Q, GUO H T, et al. Anchor-free arbitrary-oriented object detector using box boundary-aware vectors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2535- 2545.  doi: 10.1109/JSTARS.2022.3158905
 | 
																													
																						| 16 | WANG G B, DING H W, YANG Z J, et al. TRC-YOLO: a real-time detection method for lightweight targets based on mobile devices. IET Computer Vision, 2022, 16(2): 126- 142.  doi: 10.1049/cvi2.12072
 | 
																													
																						| 17 | CHEN Q A, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 18 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1-10. | 
																													
																						| 19 | FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 20 | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2018: 1-10. | 
																													
																						| 21 | GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]//Proceedings of Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1-10. | 
																													
																						| 22 | XU C, WANG J W, YANG W, et al. Detecting tiny objects in aerial images: a normalized Wasserstein distance and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190, 79- 93.  doi: 10.1016/j.isprsjprs.2022.06.002
 | 
																													
																						| 23 |  | 
																													
																						| 24 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 1-10. | 
																													
																						| 25 | CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1-10. | 
																													
																						| 26 |  | 
																													
																						| 27 |  | 
																													
																						| 28 | GUPTA S, GUPTA M K. A comprehensive data-level investigation of cancer diagnosis on imbalanced data. Computational Intelligence, 2022, 38(1): 156- 186.  doi: 10.1111/coin.12452
 | 
																													
																						| 29 | DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1-10. |