| 1 | 丁小雪. 基于改进CNN+RNN的视频手势识别研究[D]. 合肥: 安徽大学, 2020. | 
																													
																						|  | DING X X. Research on video gesture recognition based on improved CNN+RNN[D]. Hefei: Anhui University, 2020. (in Chinese) | 
																													
																						| 2 | PU J F, ZHOU W G, ZHANG J H, et al. Sign language recognition based on trajectory modeling with HMMs[C]//Proceedings of International Conference on Multimedia Modeling. Berlin, Germany: Springer, 2016: 686-697. | 
																													
																						| 3 | WANG H J, CHAI X J, CHEN X L. Sparse Observation(SO) alignment for sign language recognition. Neurocomputing, 2016, 175, 674- 685.  doi: 10.1016/j.neucom.2015.10.112
 | 
																													
																						| 4 | 刘鹏飞, 朱健晨, 万良易, 等. 低功耗异构计算架构的高光谱遥感图像分类研究. 计算机工程, 2022, 48(12): 9-15, 23.  URL
 | 
																													
																						|  | LIU P F, ZHU J C, WAN L Y, et al. Research on hyperspectral remote sensing image classification using low-power heterogeneous computing architecture. Computer Engineering, 2022, 48(12): 9-15, 23.  URL
 | 
																													
																						| 5 | 韩磊, 高永彬, 史志才. 基于稀疏Transformer的雷达点云三维目标检测. 计算机工程, 2022, 48(11): 104-110, 144.  URL
 | 
																													
																						|  | HAN L, GAO Y B, SHI Z C. Radar point cloud 3D target detection based on sparse Transformer. Computer Engineering, 2022, 48(11): 104-110, 144.  URL
 | 
																													
																						| 6 | 徐智明, 戚湧. 基于UV贴图优化人体特征的行人重识别. 计算机工程, 2022, 48(11): 83-88, 95.  URL
 | 
																													
																						|  | XU Z M, QI Y. Pedestrian re-recognition based on UV mapping optimization of human features. Computer Engineering, 2022, 48(11): 83-88, 95.  URL
 | 
																													
																						| 7 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.  doi: 10.1162/neco.1997.9.8.1735
 | 
																													
																						| 8 | LIU T, ZHOU W G, LI H Q. Sign language recognition with long short-term memory[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2016: 2871-2875. | 
																													
																						| 9 | 王民, 李泽洋, 王纯, 等. 基于压缩感知与SURF特征的手语关键帧提取算法. 激光与光电子学进展, 2018, 55(5): 051013.  URL
 | 
																													
																						|  | WANG M, LI Z Y, WANG C, et al. Key frame extraction algorithm of sign language based on compressed sensing and SURF features. Laser & Optoelectronics Progress, 2018, 55(5): 051013.  URL
 | 
																													
																						| 10 | TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 4489-4497. | 
																													
																						| 11 | 王粉花, 张强, 黄超, 等. 融合双流三维卷积和注意力机制的动态手势识别. 电子与信息学报, 2021, 43(5): 1389- 1396.  URL
 | 
																													
																						|  | WANG F H, ZHANG Q, HUANG C, et al. Dynamic gesture recognition combining two-stream 3D convolution with attention mechanisms. Journal of Electronics & Information Technology, 2021, 43(5): 1389- 1396.  URL
 | 
																													
																						| 12 | ZHOU W G, LUI K S, TAM V W L, et al. Applying (3+2+1)D residual neural network with frame selection for Hong Kong Sign language recognition[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4296-4302. | 
																													
																						| 13 | HARA K, KATAOKA H, SATOH Y. Learning spatio-temporal features with 3D residual networks for action recognition[C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2018: 3154-3160. | 
																													
																						| 14 | FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion. Berlin, Germany: Springer, 2003. | 
																													
																						| 15 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9. | 
																													
																						| 16 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																						| 17 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141. | 
																													
																						| 18 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19. | 
																													
																						| 19 | MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 3138-3147. | 
																													
																						| 20 | HUANG J E, ZHOU W G, ZHANG Q L, et al. Video-based sign language recognition without temporal segmentation[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018, 32(1): 2257-2264. | 
																													
																						| 21 | WANG H J, CHAI X J, HONG X P, et al. Isolated sign language recognition with Grassmann covariance matrices. ACM Transactions on Accessible Computing, 2016, 8(4): 1- 21. | 
																													
																						| 22 | ZHANG J H, ZHOU W G, XIE C, et al. Chinese sign language recognition with adaptive HMM[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2016: 1-6. | 
																													
																						| 23 | HUANG J, ZHOU W G, LI H Q, et al. Attention-based 3D-CNNs for large-vocabulary sign language recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9): 2822- 2832. | 
																													
																						| 24 | LIAO Y Q, XIONG P W, MIN W D, et al. Dynamic sign language recognition based on video sequence with BLSTM-3D residual networks. IEEE Access, 2019, 7, 38044- 38054. | 
																													
																						| 25 | HUANG J, ZHOU W G, LI H Q, et al. Sign language recognition using 3D convolutional neural networks[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2015: 1-6. |