[1] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3):56-58. [2] MOLLANOROOZI M. Review on recommender system and architecture[J]. Majlesi Journal of Telecommunication Devices, 2023, 11(3):177-185. [3] 汤佳欣, 陈阳, 周孟莹, 等. 深度学习方法在兴趣点推荐中的应用研究综述[J]. 计算机工程, 2022, 48(1):12-23, 42. TANG J X, CHEN Y, ZHOU M Y, et al. A survey of studies on deep learning applications in POI recommendation[J]. Computer Engineering, 2022, 48(1):12-23, 42.(in Chinese) [4] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1):61-80. [5] WU S W, SUN F, ZHANG W T, et al. Graph neural networks in recommender systems:a survey[J]. ACM Computing Surveys, 55(5):111. [6] 陈昱瑾, 王晶, 武志昊, 等. 基于图卷积网络融合群组关系的社会化推荐方法[J]. 计算机工程, 2023, 49(5):112-121. CHEN Y J, WANG J, WU Z H, et al. Social recommendation method integrating group relationships based on graph convolution network[J]. Computer Engineering, 2023, 49(5):112-121.(in Chinese) [7] WANG Z Y, ZHAO H, SHI C. Profiling the design space for graph neural networks based collaborative filtering[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA:ACM Press, 2022:1109-1119. [8] LIU X, ZHANG F J, HOU Z Y, et al. Self-supervised learning:generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1):857-876. [9] VERLEYSEN A, BIONDINA M, WYFFELS F. Learning self-supervised task progression metrics:a case of cloth folding[J]. Applied Intelligence, 2023, 53(2):1725-1743. [10] 王曙燕, 郭睿涵, 孙家泽. 基于图对比学习的MOOC推荐方法[J]. 计算机工程, 2023, 49(1):57-64, 72. WANG S Y, GUO R H, SUN J Z. Recommendation method for MOOC based on graph contrastive learning[J]. Computer Engineering, 2023, 49(1):57-64, 72.(in Chinese) [11] TIAN R L, SHI H M. Momentum memory contrastive learning for transfer-based few-shot classification[J]. Applied Intelligence, 2023, 53(1):864-878. [12] YE H B, LI X J, YAO Y, et al. Towards robust neural graph collaborative filtering via structure denoising and embedding perturbation[J]. ACM Transactions on Information Systems, 2023, 41(3):1-28. [13] HU W, LIU B, GOMES J. Strategies for pre-training graph neural networks[EB/OL].[2023-11-15]. https://arxiv.org/abs/1905.12265. [14] HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of International Conference on Machine Learning. New York, USA:ICML, 2020:4116-4126. [15] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[EB/OL].[2023-11-15]. https://arxiv.org/abs/1809.10341. [16] ZHU Y, XU Y, YU F, et al. Deep graph contrastive representation learning[EB/OL].[2023-11-15]. https://arxiv.org/abs/2006.04131. [17] ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the 2021 Web Conference. New York, USA:ACM Press, 2021:2069-2080. [18] XIA X, YIN H Z, YU J L, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5):4503-4511. [19] WEI Y W, WANG X, LI Q, et al. Contrastive learning for cold-start recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA:ACM Press, 2021:5382-5390. [20] YANG Y H, WU L, HONG R C, et al. Enhanced graph learning for collaborative filtering via mutual information maximization[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2021:71-80. [21] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2019:165-174. [22] SUN J N, ZHANG Y X, GUO W, et al. Neighbor interaction aware graph convolution networks for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2020:639-648. [23] SUN J N, ZHANG Y X, MA C, et al. Multi-graph convolution collaborative filtering[C]//Proceedings of the IEEE International Conference on Data Mining. Washington D. C., USA:IEEE Press, 2019:1306-1311. [24] LIN Z H, TIAN C X, HOU Y P, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]//Proceedings of the 2022 Web Conference. New York, USA:ACM Press, 2022:2320-2329. [25] KABBUR S, NING X, KARYPIS G. FISM:factored item similarity models for Top-N recommender systems[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2013:659-667. [26] WANG X, JIN H Y, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2020:1001-1010. [27] OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[EB/OL].[2023-11-15].https://arxiv.org/abs/1807.03748. [28] HARPER F M, KONSTAN J A. The MovieLens datasets:history and context[J]. ACM Transactions on Interactive Intelligent Systems, 5(4):19. [29] ASGHAR N. Yelp dataset challenge:review rating prediction[EB/OL].[2023-11-15]. https://arxiv.org/abs/1605.05362. [30] MCAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2015:43-52. [31] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility:user movement in location-based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA:ACM Press, 2011:1082-1090. [32] WU J C, WANG X, FENG F L, et al. Self-supervised graph learning for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2021:726-735. |