[1] CONNOR P M, BAKER P E, XENIAS D, et al. Policy and regulation for smart grids in the United Kingdom[J]. Renewable and Sustainable Energy Reviews, 2014, 40:269-286. [2] LAMNATOU C, CHEMISANA D, CRISTOFARI C. Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment[J]. Renewable Energy, 2022, 185:1376-1391. [3] HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80(12):1870-1891. [4] CARRIE ARMEL K, GUPTA A, SHRIMALI G, et al. Is disaggregation the holy grail of energy efficiency? The case of electricity[J]. Energy Policy, 2013, 52:213-234. [5] MEIDAN Y, BOHADANA M, MATHOV Y, et al. N-BaIoT-network-based detection of IoT botnet attacks using deep autoencoders[J]. IEEE Pervasive Computing, 2018, 17(3):12-22. [6] HART G W. Residential energy monitoring and computerized surveillance via utility power flows[J]. IEEE Technology and Society Magazine, 1989, 8(2):12-16. [7] ZHANG C Y, ZHONG M J, WANG Z Z, et al. Sequence-to-point learning with neural networks for non-intrusive load monitoring[EB/OL].[2023-03-08]. https://arxiv.org/pdf/1612.09106.pdf. [8] SHIN C, JOO S, YIM J, et al. Subtask gated networks for non-intrusive load monitoring[EB/OL].[2023-03-08]. https://arxiv.org/pdf/1811.06692.pdf. [9] BEJARANO G, DEFAZIO D, RAMESH A. Deep latent generative models for energy disaggregation[C]//Proceedings of the AAAI Conference on Artificial Intelligence[S.l.]:AAAI Press, 2019:850-857. [10] KONG W C, DONG Z Y, MA J, et al. An extensible approach for non-intrusive load disaggregation with smart meter data[J]. IEEE Transactions on Smart Grid, 2018, 9(4):3362-3372. [11] XIA D, BA S S, AHMADPOUR A. Non-intrusive load disaggregation of smart home appliances using the IPPO algorithm and FHM model[J]. Sustainable Cities and Society, 2021, 67:102731. [12] SALEM H, SAYED-MOUCHAWEH M, TAGINA M. Unsupervised Bayesian non parametric approach for non-intrusive load monitoring based on time of usage[J]. Neurocomputing, 2021, 435:239-252. [13] DESAI S, ALHADAD R, MAHMOOD A, et al. Multi-state energy classifier to evaluate the performance of the NILM algorithm[J]. Sensors, 2019, 19(23):5236. [14] KELLY J, KNOTTENBELT W. Neural NILM:deep neural networks applied to energy disaggregation[C]//Proceedings of the 2nd International Conference on Embedded Systems for Energy-Efficient Built Environments. New York, USA:ACM Press, 2015:55-64. [15] 张丽, 张涛, 张宏伟, 等. 一种基于多参量隐马尔可夫模型的负荷辨识方法[J]. 电力系统保护与控制, 2019, 47(20):81-90. ZHANG L, ZHANG T, ZHANG H W, et al. Research on a method of load identification based on multi parameter hidden Markov model[J]. Power System Protection and Control, 2019, 47(20):81-90.(in Chinese) [16] REN Z R, TANG B, WANG L F, et al. Household appliance identification based on a novel load signature processing framework[C]//Proceedings of the 3rd Conference on Energy Internet and Energy System Integration (EI2). Washington D. C., USA:IEEE Press, 2019:2076-2080. [17] 张玉天, 邓春宇, 刘沅昆, 等. 基于卷积神经网络的非侵入负荷辨识算法[J]. 电网技术, 2020, 44(6):2038-2044. ZHANG Y T, DENG C Y, LIU Y K, et al. Non-intrusive load identification algorithm based on convolution neural network[J]. Power System Technology, 2020, 44(6):2038-2044.(in Chinese) [18] 李莉, 黄友金, 熊炜, 等. 基于改进卷积神经网络的非侵入负荷辨识方法研究[J]. 电测与仪表, 2024,61(1):125-130,156. LI L, HUANG Y J, XIONG W, et al. Non-intrusive load identification based on inproved convolutional neural network[J]. Electrical Measurement & Instrumentation, 2024,61(1):125-130,156.(in Chinese) [19] DAI S, MENG F L, WANG Q, et al. DP$^2$-NILM:a distributed and privacy-preserving framework for non-intrusive load monitoring[EB/OL].[2023-03-08]. http://arxiv.org/abs/2207.00041. [20] ROUHANI B D, RIAZI M S, KOUSHANFAR F. DeepSecure:scalable provably-secure deep learning[C]//Proceedings of the 55th ACM/ESDA/IEEE Design Automation Conference (DAC). New York, USA:ACM Press, 2018:1-6. [21] JUVEKAR C,VAIKUNTANATHAN V,CHANDRAKASAN A. GAZELLE:a low latency framework for secure neural network inference[C]//Proceedings of the 27th USENIX Conference on Security Symposium. New York, USA:ACM Press, 2018:1651-1668. [22] MISHRA P, LEHMKUHL R, SRINIVASAN A, et al. Delphi:a cryptographic inference system for neural networks[C]//Proceedings of the Workshop on Privacy-Preserving Machine Learning in Practice. New York, USA:ACM Press, 2020:27-30. [23] RATHEE D, RATHEE M, KUMAR N, et al. CrypTFlow2:practical 2-party secure inference[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York, USA:ACM Press, 2020:325-342. [24] HUANG Z, LU W, HONG C, et al. Cheetah:Lean and fast secure {two-party} deep neural network inference[C]//Proceedings of the 31st USENIX Security Symposium.[S.l.]:AAAI Press, 2022:809-826. [25] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2017:6230-6239. [26] MASSIDDA L, MARROCU M, MANCA S. Non-intrusive load disaggregation by convolutional neural network and multilabel classification[J]. Applied Sciences, 2020, 10(4):1454. [27] 杜宇, 严萌, 武昕. 基于上采样金字塔结构的卷积神经网络的非侵入负荷辨识算法[J]. 计算机应用, 2022, 42(10):3300-3306. DU Y, YAN M, WU X. Non-intrusive load identification algorithm based on convolutional neural network with upsampling pyramid structure[J]. Journal of Computer Applications, 2022, 42(10):3300-3306.(in Chinese) [28] KELLY J, KNOTTENBELT W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes[J]. Scientific Data, 2015, 2:150007. |