作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (5): 182-189. doi: 10.19678/j.issn.1000-3428.0067381

• 网络空间安全 • 上一篇    下一篇

基于金字塔网络的非侵入式负荷辨识及其隐私保护方案

王以良, 周鹏, 叶卫, 戚伟强   

  1. 国网浙江省电力有限公司信息通信分公司, 浙江 杭州 310016
  • 收稿日期:2023-04-11 修回日期:2023-08-05 发布日期:2023-10-30
  • 通讯作者: 王以良,E-mail:wangyiliang206@163.com E-mail:wangyiliang206@163.com
  • 基金资助:
    国网浙江省电力有限公司科技项目(5211XT220002)。

Non-Intrusive Load Monitoring and Its Privacy-Preserving Scheme Based on Pyramid Network

WANG Yiliang, ZHOU Peng, YE Wei, QI Weiqiang   

  1. State Grid Zhejiang Electric Power Corporation Information &Telecommunication Branch, Hangzhou 310016, Zhejiang, China
  • Received:2023-04-11 Revised:2023-08-05 Published:2023-10-30
  • Contact: 王以良,E-mail:wangyiliang206@163.com E-mail:wangyiliang206@163.com

摘要: 智能电网融合了信息系统,能够为能源供应提供更有效的解决方案。智能电表是智能电网的关键部分,对智能电表数据的深入研究有助于为智能电网的管理和决策提供有效支持。非侵入式负荷辨识(NILM)技术为需求侧管理提供了技术支撑,但现有方式需要用户和NILM服务端进行数据交互,在这个过程中泄露了隐私信息。针对上述问题,设计了基于2D-卷积神经网络(2D-CNN)金字塔网络的NILM,并采用同态加密和安全多方计算技术进行隐私保护,针对金字塔网络的卷积、全连接、批标准化、平均池化、ReLU和上采样等算子设计隐私保护协议,组合隐私保护算子构建隐私保护的2D-CNN金字塔网络。整个过程没有还原数据和中间结果的原始信息,从而保护了双方隐私。在UK-DALE数据集上的实验结果表明,基于2D-CNN的金字塔网络能够表现出良好的效果,准确率达到95.81%,并且隐私保护的2D-CNN金字塔网络能够在保护客户端数据和服务端模型参数隐私性的情况下保持2D-CNN金字塔网络的推理效果,精确率、召回率和准确率等保持一致。同时,隐私保护的2D-CNN金字塔网络在广域网中计算时间不到5 s,在局域网中不到0.5 s,并且通信量仅需4.79 MB,能够适用于NILM任务的现实场景。

关键词: 智能电网, 非侵入式负荷辨识, 金字塔网络, 同态加密, 安全多方计算

Abstract: Smart grids integrate information systems to provide more effective energy-supply solutions. Smart electricity meters are a key part of smart grids, and in-depth research on smart electricity meter data can provide effective support for smart grid management and decision-making. Non-Intrusive Load Monitoring (NILM) technology provides technical support on the demand-side management; however, existing methods require data interaction between users and NILM servers, resulting in the disclosure of private information during this process. To solve these problems, an NILM based on a pyramid network with a two-dimensional Convolutional Neural Network (2D-CNN) is designed, and privacy is protected by homomorphic encryption and secure multiparty computation technology. Privacy-preserving protocols are designed for operators of pyramid networks, such as convolution, full connection, batch normalization, average pooling, ReLU, and upsampling, and are combined to construct a privacy-preserving 2D-CNN pyramid network. The entire process does not restore the original information contained in the data or the intermediate results, thereby protecting the privacy of both parties. The experimental results on the UK-DALE dataset show that the pyramid network based on 2D-CNN can perform well, with an accuracy of 95.81%, and that the privacy-preserving 2D-CNN pyramid network can maintain the inference performance of the 2D-CNN pyramid network while protecting the privacy of the client data and server model parameters with consistent accuracy and recall. At the same time, the privacy-preserving 2D-CNN pyramid network requires a computation time of less than 5 s in a Wide Area Network(WAN) and less than 0.5 s in a Local Area Network(LAN), with a communication volume of only 4.79 MB, making it suitable for real-world scenarios with NILM tasks.

Key words: smart grid, Non-Intrusive Load Monitoring (NILM), pyramid network, homomorphic encryption, secure multi-party computation

中图分类号: