1 |
李少波, 杨静, 王铮, 等. 缺陷检测技术的发展与应用研究综述. 自动化学报, 2020, 46 (11): 2319- 2336.
|
|
LI S B , YANG J , WANG Z , et al. Review of development and application of defect detection technology. Acta Automatica Sinica, 2020, 46 (11): 2319- 2336.
|
2 |
周亮, 王振环, 孙东辰, 等. 现代精密测量技术现状及发展. 仪器仪表学报, 2017, 38 (8): 1869- 1878.
|
|
ZHOU L , WANG Z H , SUN D C , et al. Present situation and development of modern precision measurement technology. Chinese Journal of Scientific Instrument, 2017, 38 (8): 1869- 1878.
|
3 |
PARK J K , KWON B K , PARK J H , et al. Machine learning-based imaging system for surface defect inspection. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3 (3): 303- 310.
doi: 10.1007/s40684-016-0039-x
|
4 |
CHU M X , GONG R F , GAO S , et al. Steel surface defects recognition based on multi-type statistical features and enhanced twin support vector machine. Chemometrics and Intelligent Laboratory Systems, 2017, 171, 140- 150.
doi: 10.1016/j.chemolab.2017.10.020
|
5 |
赵鹤, 杨晓洪, 李小彤, 等. 基于贝叶斯网络的铜带表面缺陷图像分类. 控制工程, 2022, 29 (10): 1901- 1906.
|
|
ZHAO H , YANG X H , LI X T , et al. Image classification of copper strip surface defects based on Bayesian network. Control Engineering of China, 2022, 29 (10): 1901- 1906.
|
6 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
7 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 7464-7475.
|
8 |
|
9 |
SHI X C, ZHOU S K, TAI Y C, et al. An improved Faster R-CNN for steel surface defect detection[C]//Proceedings of the 24th IEEE International Workshop on Multimedia Signal Processing. Washington D.C., USA: IEEE Press, 2022: 1-5.
|
10 |
|
11 |
ZHONG H, WU B, ZHANG X, et al. Steel surface defect detection based on an improved YOLOv5 model[C]//Proceedings of the 5th International Conference on Intelligent Control, Measurement and Signal Processing. Washington D.C., USA: IEEE Press, 2023: 51-55.
|
12 |
曹义亲, 周一纬, 徐露. 基于E-YOLOX的实时金属表面缺陷检测算法. 图学学报, 2023, 44 (4): 677- 690.
|
|
CAO Y Q , ZHOU Y W , XU L . A real-time metallic surface defect detection algorithm based on E-YOLOX. Journal of Graphics, 2023, 44 (4): 677- 690.
|
13 |
窦智, 胡晨光, 李庆华, 等. 改进YOLOv7的小样本钢板表面缺陷检测算法. 计算机工程与应用, 2023, 59 (23): 283- 292.
|
|
DOU Z , HU C G , LI Q H , et al. Improved YOLOv7 algorithm for small sample steel plate surface defect detection. Computer Engineering and Applications, 2023, 59 (23): 283- 292.
|
14 |
HE K , ZHANG X , REN S , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
15 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 2117-2125.
|
16 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 8759-8768.
|
17 |
|
18 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1704.04861v1.
|
19 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6848-6856.
|
20 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 1580-1589.
|
21 |
|
22 |
|
23 |
|
24 |
ZHENG Z H , WANG P , LIU W , et al. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12993- 13000.
doi: 10.1609/aaai.v34i07.6999
|
25 |
|