| 1 |  | 
																													
																						| 2 |  BIEL L ,  PETTERSSON O ,  PHILIPSON L , et al.  ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement, 2001, 50 (3): 808- 812.  doi: 10.1109/19.930458
 | 
																													
																						| 3 | 汪莉. 基于ECG信号的身份识别技术研究[D]. 济南: 山东大学, 2005. | 
																													
																						|  | WANG L. Research on identity recognition technology based on ECG signal[D]. Jinan: Shandong University, 2005. (in Chinese) | 
																													
																						| 4 | SILVA H P D, GAMBOA H, FRED A. Applicability of lead V2 ECG measurements in biometrics[C]//Proceedings of Mede-Tel'07. Washington D. C., USA: IEEE Press, 2007: 177-180. | 
																													
																						| 5 | GAHI Y, LAMRANI M, ZOGLAT A, et al. Biometric identification system based on electrocardiogram data[C]//Proceedings of Conference on New Technologies, Mobility and Security. Washington D. C., USA: IEEE Press, 2008: 1-5. | 
																													
																						| 6 | 贺煜航, 刘棪, 陈刚.  基于自适应图卷积网络的心电图多标签分类模型. 计算机工程, 2022, 48 (12): 261- 269.  URL
 | 
																													
																						|  |  HE Y H ,  LIU Y ,  CHEN G .  Multi-label classification model of electrocardiogram based on adaptive graph convolutional network. Computer Engineering, 2022, 48 (12): 261- 269.  URL
 | 
																													
																						| 7 |  CHEN C Y ,  LIN Y T ,  LEE S J , et al.  Automated ECG classification based on 1D deep learning network. Methods, 2022, 202, 127- 135.  doi: 10.1016/j.ymeth.2021.04.021
 | 
																													
																						| 8 |  MELZI P ,  TOLOSANA R ,  VERA-RODRIGUEZ R .  ECG biometric recognition: review, system proposal, and benchmark evaluation. IEEE Access, 2023, 11, 15555- 15566.  doi: 10.1109/ACCESS.2023.3244651
 | 
																													
																						| 9 |  ALEIDAN A A ,  ABBAS Q ,  DAADAA Y , et al.  Biometric-based human identification using ensemble-based technique and ECG signals. Applied Sciences, 2023, 13 (16): 9454.  doi: 10.3390/app13169454
 | 
																													
																						| 10 | 颜菲, 胡玉平.  叠加去噪自动编码器结合深度神经网络的心电图信号分类方法. 计算机应用与软件, 2019, 36 (4): 178- 185. | 
																													
																						|  |  YAN F ,  HU Y P .  Electrocardiogram signals classification method based on stacked denoising AutoEncodercombined with deep neural network algorithm. Computer Applications and Software, 2019, 36 (4): 178- 185. | 
																													
																						| 11 |  WANG D ,  SI Y J ,  YANG W Y , et al.  A novel electrocardiogram biometric identification method based on temporal-frequency autoencoding. Electronics, 2019, 8 (6): 667.  doi: 10.3390/electronics8060667
 | 
																													
																						| 12 |  JUN S ,  SZMAJDA M ,  KHOMA V , et al.  Comparison of methods for correcting outliers in ECG-based biometric identification. Metrology and Measurement Systems, 2020, 18 (5): 387- 398. | 
																													
																						| 13 |  SUN L ,  ZHONG Z Y ,  QU Z G , et al.  PerAE: an effective personalized AutoEncoder for ECG-based biometric in augmented reality system. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (6): 2435- 2446.  doi: 10.1109/JBHI.2022.3145999
 | 
																													
																						| 14 |  SILVA R ,  FRED A ,  PLÁCIDO DA SILVA H .  Morphological AutoEncoders for beat-by-beat atrial fibrillation detection using single-lead ECG. Sensors, 2023, 23 (5): 2854.  doi: 10.3390/s23052854
 | 
																													
																						| 15 | 卢莉蓉, 王鉴, 牛晓东, 等.  基于心动周期和经验模式分解的心电信号去噪处理. 数据采集与处理, 2020, 35 (4): 702- 710. | 
																													
																						|  |  LU L R ,  WANG J ,  NIU X D , et al.  Electrocardiogram signal denoising based on cardiac cycle and empirical mode decomposition. Journal of Data Acquisition and Processing, 2020, 35 (4): 702- 710. | 
																													
																						| 16 | 邵伟. 基于深度学习的ECG身份识别研究[D]. 长春: 吉林大学, 2021. | 
																													
																						|  | SHAO W. Research on ECG identity recognition based on deep learning[D]. Changchun: Jilin University, 2021. (in Chinese) | 
																													
																						| 17 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 770-778. | 
																													
																						| 18 |  CHU Y F ,  SHEN H B ,  HUANG K J .  ECG authentication method based on parallel multi-scale one-dimensional residual network with center and margin loss. IEEE Access, 2019, 7, 51598- 51607.  doi: 10.1109/ACCESS.2019.2912519
 | 
																													
																						| 19 |  BELO D ,  BENTO N ,  SILVA H , et al.  ECG biometrics using deep learning and relative score threshold classification. Sensors, 2020, 20 (15): 4078.  doi: 10.3390/s20154078
 | 
																													
																						| 20 |  EL BOUJNOUNI I ,  ZILI H ,  TALI A , et al.  A wavelet-based capsule neural network for ECG biometric identification. Biomedical Signal Processing and Control, 2022, 76, 103692.  doi: 10.1016/j.bspc.2022.103692
 | 
																													
																						| 21 |  MELTZER D ,  LUENGO D .  Efficient Clustering-based electrocardiographic biometric identification. Expert Systems with Applications, 2023, 219, 119609.  doi: 10.1016/j.eswa.2023.119609
 | 
																													
																						| 22 |  KIM Y ,  CHOI G ,  CHOI C .  One-dimensional shallow neural network using non-fiducial based segmented electrocardiogram for user identification system. IEEE Access, 2023, 11, 102483- 102491. | 
																													
																						| 23 | 姚嘉伟, 蔡延光.  基于多核卷积和多头自注意力的心电图身份识别方法. 自动化与信息工程, 2023, 44 (5): 32- 37. | 
																													
																						|  |  YAO J W ,  CAI Y G .  ECG identity recognition method based on multi-kernel convolution and multi-head self-attention. Automation[WT《Times New Roman》]& Information Engineering, 2023, 44 (5): 32- 37. | 
																													
																						| 24 |  ZHANG X ,  LIU Q F ,  HE D , et al.  Electrocardiogram-based biometric identification using mixed feature extraction and sparse representation. Sensors, 2023, 23 (22): 9179. | 
																													
																						| 25 |  CAMARA C ,  PERIS-LOPEZ P ,  SAFKHANI M , et al.  ECG identification based on the gramian angular field and tested with individuals in resting and activity states. Sensors, 2023, 23 (2): 937. |