作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 120-128. doi: 10.19678/j.issn.1000-3428.0069414

• 人工智能与模式识别 • 上一篇    下一篇

基于层级软提示交互融合的少样本事件方面类别检测方法

艾传鲜1,2,3, 郭军军1,2,*(), 尹兆良1,2,3   

  1. 1. 昆明理工大学信息工程与自动化学院, 云南 昆明 650500
    2. 昆明理工大学云南省人工智能重点实验室, 云南 昆明 650500
    3. 国家计算机网络应急技术处理协调中心云南分中心, 云南 昆明 650000
  • 收稿日期:2024-02-23 修回日期:2024-04-12 出版日期:2025-09-15 发布日期:2024-06-25
  • 通讯作者: 郭军军
  • 基金资助:
    国家重点研发计划(202301AT070444); 国家自然科学基金(62366025); 云南省科技厅自然科学基金(202202AE090008-3)

Method for Event Aspect Category Detection in Few Shot Scenarios via Hierarchical Soft Prompt Interaction Fusion

AI Chuanxian1,2,3, GUO Junjun1,2,*(), YIN Zhaoliang1,2,3   

  1. 1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    3. Yunnan Branch, National Computer Network Emergency Response Technical Team/Coordination Center of China, Kunming 650000, Yunnan, China
  • Received:2024-02-23 Revised:2024-04-12 Online:2025-09-15 Published:2024-06-25
  • Contact: GUO Junjun

摘要:

事件方面类别检测(ACD)旨在识别出给定事件文本中的方面类别, 相关研究可以辅助获取不同领域和事件文本中的关键信息, 特别是在社交媒体舆情研究中具有实用价值。在社交媒体舆情事件发展前期, 事件文本标记数据稀缺, 如何基于少量标记数据实现准确的事件方面检测是一个亟待解决的问题。提出一种基于预训练模型的多层级软提示交互融合少样本事件方面类别检测方法, 基于预训练构建多层级的软提示模板, 分别与预训练模型进行层级语义表征和交互融合, 并自适应地融合多层级的提示表征, 从而提升少样本事件方面类别检测的效果。在自构建中文社交媒体少样本数据集和英文数据集上进行实验, 实验结果证明所提方法明显优于其他基线方法, 此外, 消融实验和可视化结果验证了所提多层级提示交互融合模块的有效性。

关键词: 少样本, 提示学习, 软提示, 方面类别检测, 多层级提示交互融合

Abstract:

Event Aspect Category Detection (ACD) aims to identify the aspect categories present in event text. Data need to be collected from various fields and textual events, particularly when researching public opinion on social media. The first phase of social media opinion events lacks sufficient data for labeling event text. The pressing issue is precisely detecting event aspects using a limited amount of labeled data. This paper presents a novel method for event ACD with limited samples. This method utilizes a pre-trained model to construct soft prompt templates, performs hierarchical semantic characterization and interaction fusion, and adaptively combines multilayer prompt characterizations. The objective is to enhance the accuracy of event ACD using limited samples. Experiments on a self-constructed Chinese social media dataset and English dataset demonstrate that the proposed method is significantly superior to other baseline methods. Further ablation experiments and visualizations confirm the effectiveness of the proposed multilayer prompt interaction fusion module.

Key words: few-shot, prompt learning, soft prompt, Aspect Category Detection (ACD), multilayer prompt interaction fusion