| 1 |
卢印举, 马芳, 戴曙光, 等. 融合多尺度特征的马尔可夫随机场路面裂缝分割算法. 计算机辅助设计与图形学学报, 2022, 34 (5): 711- 721.
|
|
LU Y J , MA F , DAI S G , et al. Markov random field road crack image segmentation algorithm integrating multi-scale features. Journal of Computer-Aided Design & Computer Graphics, 2022, 34 (5): 711- 721.
|
| 2 |
AKAGIC A, BUZA E, OMANOVIC S, et al. Pavement crack detection using Otsu thresholding for image segmentation[C]//Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Washington D.C., USA: IEEE Press, 2018: 1092-1097.
|
| 3 |
徐欢, 李振璧, 姜媛媛, 等. 基于OpenCV和改进Canny算子的路面裂缝检测. 计算机工程与设计, 2014, 35 (12): 4254- 4258.
|
|
XU H , LI Z B , JIANG Y Y , et al. Pavement crack detection based on OpenCV and improved Canny operator. Computer Engineering and Design, 2014, 35 (12): 4254- 4258.
|
| 4 |
JI A K , XUE X L , WANG Y N , et al. An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement. Automation in Construction, 2020, 114, 103176.
doi: 10.1016/j.autcon.2020.103176
|
| 5 |
CHEN T Y , CAI Z H , ZHAO X , et al. Pavement crack detection and recognition using the architecture of SegNet. Journal of Industrial Information Integration, 2020, 18, 100144.
doi: 10.1016/j.jii.2020.100144
|
| 6 |
JU H Y , LI W , TIGHE S , et al. CrackU-Net: a novel deep convolutional neural network for pixelwise pavement crack detection. Structural Control and Health Monitoring, 2020, 27 (8): e2551.
|
| 7 |
|
| 8 |
张明星, 徐健, 刘秀平, 等. 改进U-Net的路面裂缝检测方法. 计算机工程与应用, 2024, 60 (24): 306- 313.
|
|
ZHANG M X , XU J , LIU X P , et al. Improved U-Net pavement crack detection method. Computer Engineering and Applications, 2024, 60 (24): 306- 313.
|
| 9 |
何宇超, 段中兴, 高静. 基于多尺度空洞卷积结构的路面裂缝分割方法. 公路交通科技, 2024, 41 (1): 1-9, 17.
|
|
HE Y C , DUAN Z X , GAO J . A method for pavement crack segmentation based on multi-scale cavity convolution structure. Journal of Highway and Transportation Research and Development, 2024, 41 (1): 1-9, 17.
|
| 10 |
梁晓, 邵天义, 王雪玮, 等. 考虑完整性分割的超轻量化路面裂缝检测方法. 中国公路学报, 2024, 37 (12): 392- 407.
|
|
LIANG X , SHAO T Y , WANG X W , et al. Ultra-lightweight pavement crack detection method considering complete segmentation. China Journal of Highway and Transport, 2024, 37 (12): 392- 407.
|
| 11 |
ZHANG Y C , LIU C . Network for robust and high-accuracy pavement crack segmentation. Automation in Construction, 2024, 162, 105375.
doi: 10.1016/j.autcon.2024.105375
|
| 12 |
ZHANG J H , SUN S Y , SONG W D , et al. A novel convolutional neural network for enhancing the continuity of pavement crack detection. Scientific Reports, 2024, 14, 30376.
doi: 10.1038/s41598-024-81119-1
|
| 13 |
ZHU G J , LIU J C , FAN Z , et al. A lightweight encoder-decoder network for automatic pavement crack detection. Computer-Aided Civil and Infrastructure Engineering, 2024, 39 (12): 1743- 1765.
doi: 10.1111/mice.13103
|
| 14 |
王安政, 党建武, 岳彪, 等. 基于位置信息和注意力机制的路面裂缝检测. 计算机工程, 2024, 50 (4): 303- 312.
doi: 10.19678/j.issn.1000-3428.0067758
|
|
WANG A Z , DANG J W , YUE B , et al. Road crack detection based on position information and attention mechanism. Computer Engineering, 2024, 50 (4): 303- 312.
doi: 10.19678/j.issn.1000-3428.0067758
|
| 15 |
|
| 16 |
WANG J , ZENG Z G , SHARMA P K , et al. Dual-path network combining CNN and transformer for pavement crack segmentation. Automation in Construction, 2024, 158, 105217.
doi: 10.1016/j.autcon.2023.105217
|
| 17 |
张涛, 王金, 刘斌, 等. 基于改进U-Net的沥青路面图像裂缝分割方法. 交通信息与安全, 2023, 41 (6): 90- 99.
|
|
ZHANG T , WANG J , LIU B , et al. Crack segmentation of asphalt pavement images based on improved U-Net. Journal of Transport Information and Safety, 2023, 41 (6): 90- 99.
|
| 18 |
ALI L , ALJASSMI H , SWAVAF M , et al. Rs-net: residual sharp U-Net architecture for pavement crack segmentation and severity assessment. Journal of Big Data, 2024, 11 (1): 116.
doi: 10.1186/s40537-024-00981-y
|
| 19 |
AL-HUDA Z , PENG B , ALI ALGBURI R N , et al. Asymmetric dual-decoder-U-Net for pavement crack semantic segmentation. Automation in Construction, 2023, 156, 105138.
doi: 10.1016/j.autcon.2023.105138
|
| 20 |
|
| 21 |
WANG H N , CAO P , WANG J Q , et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (3): 2441- 2449.
doi: 10.1609/aaai.v36i3.20144
|
| 22 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2025-02-05]. https://arxiv.org/pdf/1502.03167.
|
| 23 |
|
| 24 |
|
| 25 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision (3DV). Washington D.C., USA: IEEE Press, 2016: 565-571.
|
| 26 |
桂彦, 叶文倩, 王建新, 等. 基于CNN和尺度自适应Transformer融合网络的路面裂缝分割方法. 中国公路学报, 2024, 37 (12): 418- 432.
|
|
GUI Y , YE W Q , WANG J X , et al. CNN and sca1e adaptive Transformer fusion network for pavement crack segmentation. China Journal of Highway and Transport, 2024, 37 (12): 418- 432.
|
| 27 |
LIU Y H , YAO J , LU X H , et al. DeepCrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing, 2019, 338, 139- 153.
doi: 10.1016/j.neucom.2019.01.036
|
| 28 |
YANG F , ZHANG L , YU S J , et al. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (4): 1525- 1535.
doi: 10.1109/TITS.2019.2910595
|
| 29 |
ZOU Q , ZHANG Z , LI Q Q , et al. DeepCrack: learning hierarchical convolutional features for crack detection. IEEE Transactions on Image Processing, 2019, 28 (3): 1498- 1512.
doi: 10.1109/TIP.2018.2878966
|
| 30 |
|
| 31 |
|
| 32 |
CHEN B Z , LIU Y S , ZHANG Z , et al. TransAttUNet: multi-level attention-guided U-Net with transformer for medical image segmentation. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8 (1): 55- 68.
doi: 10.1109/TETCI.2023.3309626
|
| 33 |
ZHANG X L , LIANG L , ZHAO S L , et al. GRFB-UNet: a new multi-scale attention network with group receptive field block for tactile paving segmentation. Expert Systems with Applications, 2024, 238, 122109.
doi: 10.1016/j.eswa.2023.122109
|
| 34 |
LAU K W , PO L M , REHMAN Y A U . Large separable kernel attention: rethinking the large kernel attention design in CNN. Expert Systems with Applications, 2024, 236, 121352.
doi: 10.1016/j.eswa.2023.121352
|
| 35 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 11531-11539.
|
| 36 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2023: 1-5.
|