1 |
SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM Press, 2007: 697-706.
|
2 |
BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2008: 1247-1250.
|
3 |
AUER S , BIZER C , KOBILAROV G , et al. DBpedia: a nucleus for a Web of open data. Berlin, Germany: Springer, 2007.
|
4 |
VRANDEČIĆ D , KRÖTZSCH M . Wikidata. Communications of the ACM, 2014, 57 (10): 78- 85.
doi: 10.1145/2629489
|
5 |
CARLSON A , BETTERIDGE J , KISIEL B , et al. Toward an architecture for never-ending language learning. Artificial Intelligence, 2010, 24 (1): 1306- 1313.
URL
|
6 |
ALHUSSIEN I, CAMBRIA E, ZHANG N S. Semantically enhanced models for commonsense knowledge acquisition[C]//Proceedings of IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2018: 1014-1021.
|
7 |
王萌, 王昊奋, 李博涵, 等. 新一代知识图谱关键技术综述. 计算机研究与发展, 2022, 59 (9): 1947- 1965.
|
|
WANG M , WANG H F , LI B H , et al. Survey on key technologies of new generation knowledge graph. Journal of Computer Research and Development, 2022, 59 (9): 1947- 1965.
|
8 |
EHRLINGER L, WÖSS W. Towards a definition of knowledge graphs[C]//Proceedings of the 12th International Conference on Semantic Systems. Washington D. C., USA: IEEE Press, 2016: 456-467.
|
9 |
ZOU Y Y , FININ T , CHEN H . F-OWL: an inference engine for semantic Web. Berlin, Germany: Springer, 2004.
|
10 |
BVHMANN L , LEHMANN J . Pattern based knowledge base enrichment. Berlin, Germany: Springer, 2013.
|
11 |
JIANG S P, LOWD D, DOU D J. Learning to refine an automatically extracted knowledge base using Markov logic[C]//Proceedings of the 12th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2012: 912-917.
|
12 |
GALÁRRAGA L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web. Washington D. C., USA: IEEE Press, 2013: 413-422.
|
13 |
GALÁRRAGA L , TEFLIOUDI C , HOSE K , et al. Fast rule mining in ontological knowledge bases with AMIE+. The VLDB Journal, 2015, 24 (6): 707- 730.
doi: 10.1007/s00778-015-0394-1
|
14 |
KIMMIG A, BACH S, BROECHELER M, et al. A short introduction to probabilistic soft logic[C]//Proceedings of NIPS'12. Cambridge, USA: MIT Press, 2012: 1-4.
|
15 |
QU M, CHEN J, XHONNEUX L P, et al. RNNLogic: learning logic rules for reasoning on knowledge graphs[C]//Proceedings of 2021 International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2021: 762-775.
|
16 |
GARDNER M, TALUKDAR P P, KISIEL B, et al. Improving learning and inference in a large knowledge-base using latent syntactic cues[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2013: 833-838.
|
17 |
GARDNER M, MITCHELL T. Efficient and expressive knowledge base completion using subgraph feature extraction[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1488-1498.
|
18 |
MEILICKE C, CHEKOL M, FINK M, et al. Reinforced anytime bottom up rule learning for knowledge graph completion[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/2004.04412.
|
19 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2013: 246-257.
|
20 |
WANG Z , ZHANG J W , FENG J L , et al. Knowledge graph embedding by translating on hyperplanes. Artificial Intelligence, 2014, 28 (1): 468- 477.
URL
|
21 |
SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2019: 332-345.
|
22 |
ZHANG S, TAY Y, YAO L, et al. Quaternion knowledge graph embeddings[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 323-335.
|
23 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2011: 809-816.
|
24 |
YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 3rd International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2015: 532-541.
|
25 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2016: 3021-3032.
|
26 |
|
27 |
|
28 |
NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of NAACL'19. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2180-2189.
|
29 |
VASHISHTH S , SANYAL S , NITIN V , et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions. Artificial Intelligence, 2020, 34 (3): 3009- 3016.
URL
|
30 |
DAS R, NEELAKANTAN A, BELANGER D, et al. Chains of reasoning over entities, relations, and text using recurrent neural networks[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2017: 132-141.
|
31 |
GUO L, SUN Z, HU W. Learning to exploit long-term relational dependencies in knowledge graphs[C]//Proceedings of the 36th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2019: 2505-2514.
|
32 |
SCHLICHTKRULL M , KIPF T N , BLOEM P , et al. Modeling relational data with graph convolutional networks. Berlin, Germany: Springer, 2018: 593- 607.
|
33 |
SHANG C , TANG Y , HUANG J , et al. End-to-end structure-aware convolutional networks for knowledge base completion. Artificial Intelligence, 2019, 33 (1): 3060- 3067.
URL
|
34 |
VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 682-693.
|
35 |
|
36 |
KIM B, HONG T, KO Y, et al. Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 1737-1743.
|
37 |
|
38 |
XIONG W H, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of International Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 332-345.
|
39 |
DAS R, DHULIAWALA S, ZAHEER M, et al. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1711.05851.
|
40 |
LIN X V, SOCHER R, XIONG C M. Multi-hop knowledge graph reasoning with reward shaping[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 3243-3253.
|
41 |
MEILICKE C , FINK M , WANG Y J , et al. Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. Berlin, Germany: Springer, 2018.
|
42 |
GUO S, WANG Q, WANG L H, et al. Jointly embedding knowledge graphs and logical rules[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2016: 192-202.
|
43 |
GUO S , WANG Q , WANG L H , et al. Knowledge graph embedding with iterative guidance from soft rules. Artificial Intelligence, 2018, 32 (1): 335- 346.
URL
|
44 |
ZHANG W, PAUDEL B, WANG L, et al. Iteratively learning embeddings and rules for knowledge graph reasoning[C]//Proceedings of World Wide Web Conference. New York, USA: ACM Press, 2019: 2366-2377.
|
45 |
QU M, TANG J. Probabilistic logic neural networks for reasoning[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 542-551.
|
46 |
EVANS R , GREFENSTETTE E . Learning explanatory rules from noisy data. Journal of Artificial Intelligence Research, 2018, 61, 51- 64.
URL
|
47 |
YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 465-476.
|
48 |
|
49 |
WEI Z Y, ZHAO J, LIU K, et al. Large-scale knowledge base completion: inferring via grounding network sampling over selected instances[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. New York, USA: ACM Press, 2015: 1331-1340.
|
50 |
ROCKTÄSCHEL T, SINGH S, RIEDEL S. Injecting logical background knowledge into embeddings for relation extraction[C]//Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1119-1129.
|
51 |
|
52 |
HU Z T, MA X Z, LIU Z Z, et al. Harnessing deep neural networks with logic rules[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2016: 2410-2420.
|
53 |
TOUTANOVA K, CHEN D Q. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Stroudsburg, USA: Association for Computational Linguistics, 2015: 57-66.
|
54 |
KOK S, DOMINGOS P. Statistical predicate invention[C]//Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM Press, 2007: 433-440.
|
55 |
MILLER G A . WordNet. Communications of the ACM, 1995, 38 (11): 39- 41.
doi: 10.1145/219717.219748
|
56 |
LAO N , COHEN W W . Relational retrieval using a combination of path-constrained random walks. Machine Learning, 2010, 81 (1): 53- 67.
doi: 10.1007/s10994-010-5205-8
|
57 |
|
58 |
SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 135-143.
|
59 |
|