Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (6): 65-73. doi: 10.19678/j.issn.1000-3428.0068540

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Small Object Detection Algorithm Based on Large Kernel Adaptive Fusion

WANG Lei, HU Junhong*(), REN Yang   

  1. College of Physical Science and Technology, Central China Normal University, Wuhan 430079, Hubei, China
  • Received:2023-10-10 Online:2025-06-15 Published:2024-05-28
  • Contact: HU Junhong

基于大内核自适应融合的小目标检测算法

王磊, 胡君红*(), 任洋   

  1. 华中师范大学物理科学与技术学院,湖北 武汉 430079
  • 通讯作者: 胡君红
  • 基金资助:
    国家自然科学基金(60101204); 湖北省自然科学基金(2020CFB474)

Abstract:

To address the challenges faced by current single-stage object detection algorithms based on convolutional neural networks (such as the YOLO series and VFNet)in high-altitude aerial shooting scenarios-including complex backgrounds, low detection accuracy, and feature overlap, this study proposes an end-to-end object detection algorithm called CSPENet. First, a deep convolutional network, CSPNeXt, with large kernels is used as the model′s backbone, enhancing its capability to capture global context. Second, by introducing a Feature Refinement Module (FRM) in both spatial and channel dimensions, adaptive weights are generated that can effectively suppress overlapping features are generated. It adds a Receptive Field Attention (RFA) mechanism, based on mobile networks in the feature fusion stage to solve the problem of large kernel parameter sharing. Finally, the Efficient Intersection over Union (EIoU) loss function is utilized as the model′s regression loss, separating the influencing factors of the aspect ratios between the predicted and ground truth boxes, which leads to faster convergence and improved localization accuracy. Experimental results demonstrate that CSPENet achieves an average accuracy improvement of 4.4 percentage points compared with the DINO algorithm on the VisDrone-DET dataset, offering a novel solution for research and applications in small object detection algorithms.

Key words: large kernel, small object, contextual information, feature refinement, adaptive fusion, receptive field

摘要:

针对当前基于卷积神经网络的单阶段目标检测算法(YOLO系列、VFNet等)在高空拍摄场景下目标背景复杂、检测精度低、特征混叠等问题,提出一种端到端的目标检测算法CSPENet。首先,采用基于大内核深度卷积CSPNeXt作为模型主干,提高模型捕捉全局上下文的能力;其次,通过引入特征细化模块(FRM)在空间和通道维度上生成自适应权重,可有效抑制混叠特征,并在特征融合阶段添加基于移动网络的感受野注意力(RFA)机制解决大内核参数共享问题;最后,采用EIoU损失函数作为模型的回归损失函数,并拆分预测框和真实框纵横比的影响因子,以提高模型收敛速度并改善定位效果。实验结果表明,CSPENet在VisDrone-DET数据集上相对于DINO算法平均准确率均值提升4.4百分点,为小目标检测算法的研究及其应用提供新的参考方案。

关键词: 大内核, 小目标, 上下文信息, 特征细化, 自适应融合, 感受野