1 |
CHEN Y Y , WANG H Q , PANG Y , et al. An infrared small target detection method based on a weighted human visual comparison mechanism for safety monitoring. Remote Sensing, 2023, 15 (11): 2922.
doi: 10.3390/rs15112922
|
2 |
WANG L, LIU H. Review of human target detection and tracking based on multi-view information fusion[C]//Proceedings of Chinese Intelligent Automation Conference. Berlin, Germany: Springer, 2023: 31-50.
|
3 |
LI K , WANG Y N , HU Z M . Improved YOLOv7 for small object detection algorithm based on attention and dynamic convolution. Applied Sciences, 2023, 13 (16): 9316.
doi: 10.3390/app13169316
|
4 |
WANG B F , LI Y W , ZHOU M F , et al. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nature Communications, 2023, 14 (1): 1341.
doi: 10.1038/s41467-023-36017-x
|
5 |
DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7373-7382.
|
6 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 10012-10022.
|
7 |
LIU Z, HU H, LIN Y T, et al. Swin transformer V2: scaling up capacity and resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 1-10.
|
8 |
NICOLAS C, FRANCISCO M, GABRIEL S, et al. End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 213-229.
|
9 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
10 |
CHEN Q, CHEN X, WANG J, et al. Group DETR: fast DETR training with group-wise one-to-many assignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 6633-6642.
|
11 |
MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 3651-3660.
|
12 |
LIU Y, ZHANG Y, WANG Y, et al. Sap-DETR: bridging the gap between salient points and queries-based transformer detector for fast model convergency[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 15539-15547.
|
13 |
|
14 |
SUN R, WANG Y, MAI H, et al. Alignment before aggregation: trajectory memory retrieval network for video object segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 1218-1228.
|
15 |
LI F , ZHANG H , LIU S L , et al. DN-DETR: accelerate DETR training by introducing query denoising. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 46 (4): 2239- 2251.
|
16 |
DE PLAEN H, DE PLAEN P F, SUYKENS J A K, et al. Unbalanced optimal transport: a unified framework for object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 3198-3207.
|
17 |
|
18 |
|
19 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-09-02]. https://arxiv.org/pdf/1704.04861.
|
20 |
|
21 |
李运堂, 朱文凯, 李恒杰, 等. 基于轻量型编解码网络的复杂输电线图像识别. 光电工程, 2024, 51 (10): 240158.
doi: 10.12086/oee.2024.240158
|
|
LI Y T , ZHU W K , LI H J , et al. Image recognition of complex transmission lines based on lightweight encoder-decoder networks. Opto-Electronic Engineering, 2024, 51 (10): 240158.
doi: 10.12086/oee.2024.240158
|
22 |
|
23 |
ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attentionand standard convolutional operation[EB/OL]. [2023-09-02]. https://arxiv.org/pdf/2304.03198.
|
24 |
XU H Z , HE H J , ZHANG Y , et al. A comparative study of loss functions for road segmentation in remotely sensed road datasets. International Journal of Applied Earth Observation and Geoinformation, 2023, 116, 103159.
doi: 10.1016/j.jag.2022.103159
|
25 |
MENG W , YUAN Y L . SGN-YOLO: detecting wood defects with improved YOLOv5 based on semi-global network. Sensors, 2023, 23 (21): 8705.
doi: 10.3390/s23218705
|
26 |
|
27 |
DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of International Conference on Computer Vision Workshop. Washington D.C., USA: IEEE Press, 2019: 213-226.
|
28 |
FAKHARURAZI M I M, JUSOH A Z, ASNAWI A L, et al. Object detection in autonomous vehicles[C]//Proceedings of the 13th International Conference on System Engineering and Technology (ICSET). Washington D.C., USA: IEEE Press, 2023: 177-181.
|