1 |
李国进, 胡洁, 艾矫燕. 基于改进SSD算法的车辆检测. 计算机工程, 2022, 48 (1): 266- 274.
doi: 10.19678/j.issn.1000-3428.0060031
|
|
LI G J , HU J , AI J Y . Vehicle detection based on improved SSD algorithm. Computer Engineering, 2022, 48 (1): 266- 274.
doi: 10.19678/j.issn.1000-3428.0060031
|
2 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 335-347.
|
3 |
BERG A C, FU C Y, SZEGEDY C, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2015: 557-565.
|
4 |
LIN T Y , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
5 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2014: 580-587.
|
6 |
HE K M , ZHANG X Y , REN S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. Berlin, Germany: Springer, 2014.
|
7 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
郭克友, 王苏东, 李雪, 等. 基于Dim env-YOLO算法的昏暗场景车辆多目标检测. 计算机工程, 2023, 49 (3): 312- 320.
doi: 10.19678/j.issn.1000-3428.0063769
|
|
GUO K Y , WANG S D , LI X , et al. Multi-target detection of vehicles in dim scenes based on Dim env-YOLO algorithm. Computer Engineering, 2023, 49 (3): 312- 320.
doi: 10.19678/j.issn.1000-3428.0063769
|
9 |
|
10 |
|
11 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J , GENG L L , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
12 |
|
13 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1-9.
|
14 |
郑秋梅, 王璐璐, 王风华. 基于改进卷积神经网络的交通场景小目标检测. 计算机工程, 2020, 46 (6): 26- 33.
doi: 10.19678/j.issn.1000-3428.0056462
|
|
ZHENG Q M , WANG L L , WANG H . Small object detection in traffic scene based on improved convolutional neural network. Computer Engineering, 2020, 46 (6): 26- 33.
doi: 10.19678/j.issn.1000-3428.0056462
|
15 |
|
16 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
17 |
LIAN J , YIN Y , LI L , et al. Small object detection in traffic scenes based on attention feature fusion. Sensors, 2021, 21 (9): 3031.
doi: 10.3390/s21093031
|
18 |
CAI Y , LUAN T , GAO H , et al. YOLOv4-5D: an effective and efficient object detector for autonomous driving. IEEE Transactions on Instrumentation and Measurement, 2021, 70 (1): 1- 13.
URL
|
19 |
WANG R , WANG Z , XU Z , et al. A real-time object detector for autonomous vehicles based on YOLOv4. Computational Intelligence and Neuroscience, 2021, 2021, 1.
URL
|
20 |
原蕾, 王科俊. 基于注意力机制与特征融合的改进YOLOv7车辆检测方法. 国外电子测量技术, 2023, 42 (9): 49- 57.
|
|
YUAN L , WANG K J . Vehicle detection based on YOLOv7 improved by attention mechanism and feature fusion. Foreign Electronic Measurement Technology, 2023, 42 (9): 49- 57.
|
21 |
蔡刘畅, 杨培峰, 张秋仪. 基于YOLOv7的道路监控车辆检测方法. 陕西科技大学学报, 2023, 41 (6): 155-161, 175.
|
|
CAI L C , YANG P F , ZHANG Q Y . Vehicle detection method based on YOLOv7 in traffic monitoring. Journal of Shaanxi University of Science& Technology, 2023, 41 (6): 155-161, 175.
|
22 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 267-275.
|
23 |
|
24 |
宋华杰, 周磊. 基于函数改进的YOLOv3车辆检测与识别算法研究. 智能科学与技术学报, 2023, 5 (4): 535- 542.
|
|
SONG H J , ZHO L . Vehicle detection and recognition algorithm based on function improvement of YOLOv3. Chinese Journal of Intelligent Science and Technology, 2023, 5 (4): 535- 542.
|
25 |
郭奕裕, 周箩鱼. 安全帽佩戴检测网络模型的轻量化设计. 计算机工程, 2023, 49 (4): 312- 320.
doi: 10.19678/j.issn.1000-3428.0064219
|
|
GUO Y Y , ZHOU L Y . Lightweight design of safety helmet wearing detection network model. Computer Engineering, 2023, 49 (4): 312- 320.
doi: 10.19678/j.issn.1000-3428.0064219
|
26 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
27 |
LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[EB/OL]. [2023-11-20]. http://arxiv.org/abs/2006.04388.
|
28 |
CHEN J, KAO S, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 365-376.
|
29 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2535-2546.
|
30 |
DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 479-488.
|
31 |
|
32 |
|
33 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 354-365.
|
34 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1800-1807.
|
35 |
LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2206.02424.
|
36 |
|
37 |
YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA: IEEE Press, 2023: 663-675.
|
38 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 483-492.
|
39 |
ZHANG Y F , REN W Q , ZHANG Z , et al. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
URL
|
40 |
ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2311.02877.
|
41 |
|
42 |
LECUN Y, DENKER J, SOLLA S. Optimal brain damage[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1989: 667-676.
|
43 |
|
44 |
MOLCHANOV P, MALLYA A, TYREE S, et al. Importance estimation for neural network pruning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 11256-11264.
|
45 |
|