[1] CHEN B T, WAN J F, CELESTI A, et al. Edge computing in IoT-based manufacturing[J]. IEEE Communications Magazine, 2018, 56(9): 103-109. [2] 蔡梓越, 谭北海, 余荣, 等. 面向6G物联网设备协同的区块链动态分片[J]. 计算机工程, 2024, 50(1): 50-59. CAI Z Y, TAN B H, YU R, et al. Dynamic blockchain sharding for 6G Internet of Things devices collaboration[J]. Computer Engineering, 2024, 50(1): 50-59. (in Chinese) [3] CHIAROT G, SILVESTRI C. Time series compression survey[J]. ACM Computing Surveys, 2023, 55(10): 1-32. [4] XIAO J Z, HUANG Y X, HU C Y, et al. Time series data encoding for efficient storage: a comparative analysis in apache IoTDB[J]. Proceedings of the VLDB Endowment, 2022, 15(10): 2148-2160. [5] YU X Y, PENG Y Q, LI F F, et al. Two-level data compression using machine learning in time series database[C]//Proceedings of the IEEE 36th International Conference on Data Engineering (ICDE). Dallas, USA: IEEE Press, 2020: 1333-1344. [6] CHEN H Y, LIU L, MENG J W, et al. AFC: an adaptive lossless floating-point compression algorithm in time series database[J]. Information Sciences, 2024, 654: 119847. [7] Google. Snappy: a fast compressor/decompressor[EB/OL].[2023-12-21]. https://google.github.io/snappy/. [8] Facebook. Zstandard[EB/OL].[2023-12-21]. https://facebook.github.io/zstd/. [9] BLALOCK D, MADDEN S, GUTTAG J. Sprintz: time series compression for the Internet of Things[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 1-23. [10] CAMPOBELLO G, SEGRETO A, ZANAFI S, et al. RAKE: a simple and efficient lossless compression algorithm for the Internet of Things[C]//Proceedings of the 25th European Signal Processing Conference. Kos, Greece: IEEE Press, 2017: 2581-2585. [11] PELKONEN T, FRANKLIN S, TELLER J, et al. Gorilla: a fast, scalable, in-memory time series database[J]. Proceedings of the VLDB Endowment, 2015, 8(12): 1816-1827. [12] LIAKOS P, PAPAKONSTANTINOPOULOU K, KOTIDIS Y. Chimp: efficient lossless floating point compression for time series databases[J]. Proceedings of the VLDB Endowment, 2022, 15(11): 3058-3070. [13] LI R Y, LI Z, WU Y, et al. Elf: erasing-based lossless floating-point compression[J]. Proceedings of the VLDB Endowment, 2023, 16(7): 1763-1776. [14] LU W Y, LIU L, ZHAI W B, et al. HBC: combining lossy and lossless hybrid bilayer compression framework on time-series data[C]//Proceedings of the IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Wuhan, China: IEEE Press, 2023: 670-679. [15] PRZYMUS P, KACZMARSKI K. Compression planner for time series database with GPU support[J]. Transactions on Large-Scale Data and Knowledge-Centered Systems ⅩⅤ: Selected Papers from ADBIS 2013 Satellite Events, 2014, 1(1): 36-63. [16] JIN Y, FU Y, LIU T, et al. Adaptive compression algorithm selection using LSTM network in column-oriented database[C]//Proceedings of the IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. Washington D. C., USA: IEEE Press, 2019: 652-656. [17] WOLTMANN L, DAMME P, HARTMANN C, et al. Learned selection strategy for lightweight integer compression algorithms[J]. Memory, 2023, 3(4): 552-564. [18] ZHANG Y, JIANG C, YUE B L, et al. Information fusion for edge intelligence: a survey[J]. Information Fusion, 2022, 81: 171-186. [19] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. [20] PINCUS S M. Approximate entropy as a measure of system complexity[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(6): 2297-2301. [21] DELGADO-BONAL A, MARSHAK A. Approximate entropy and sample entropy: a comprehensive tutorial[J]. Entropy (Basel), 2019, 21(6): E541. [22] HENRY M. Permutation entropy[EB/OL].[2024-02-18]. https://www.aptech.com/blog/permutation-entropy/. [23] Wikipedia. Lempel-Ziv complexity[EB/OL].[2024-06-18]. https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv_complexity. [24] ELSAYED N, MAIDA A S, BAYOUMI M. Deep gated recurrent and convolutional network hybrid model for univariate time series classification[EB/OL].[2024-06-18]. https://arxiv.org/abs/1812.07683. [25] TAN J B, WAN J F, XIA D. Automobile component recognition based on deep learning network with coarse-fine-grained feature fusion[J]. International Journal of Intelligent Systems, 2023, 2023(Pt.1): 1903292. [26] 郑雅洲, 刘万平, 黄东. 一种基于注意力机制的BERT-CNN-GRU检测方法[J]. 计算机工程, 2025, 51(1): 258-268. ZHENG Y Z, LIU W P, HUANG D. A BERT-CNN-GRU detection method based on attention mechanism[J]. Computer Engineering, 2025, 51(1): 258-268. (in Chinese) [27] DAU H A, BAGNALL A, KAMGAR K, et al. The UCR time series archive[J]. CAA Journal of Automatica Sinica, 2019, 6(6): 1293-1305. [28] Hexagon-ML. Multi-dataset time-series anomaly detection competition[EB/OL].[2024-02-18]. https://compete.hexagon-ml.com/practice/competition/39/. [29] WAN J F, LI X M, DAI H N, et al. Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges[J]. Proceedings of the IEEE, 2021, 109(4): 377-398. [30] KARIM F, MAJUMDAR S, DARABI H, et al. LSTM fully convolutional networks for time series classification[J]. IEEE Access, 2018, 6: 1662-1669. [31] LZ4. LZ4—extremely fast compression[EB/OL].[2024-02-18]. https://lz4.github.io/lz4/. [32] BURTSCHER M, RATANAWORABHAN P. FPC: a high-speed compressor for double-precision floating-point data[J]. IEEE Transactions on Computers, 2008, 58(1): 18-31. |