| 1 | BADHIWALA J H, AHUJA C S, AKBAR M A, et al. Degenerative cervical myelopathy: update and future directions. Nature Reviews Neurology, 2020, 16 (2): 108- 124.  doi: 10.1038/s41582-019-0303-0
 | 
																													
																							| 2 | TOH T S, DONDELINGER F, WANG D. Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine, 2019, 47, 607- 615.  doi: 10.1016/j.ebiom.2019.08.027
 | 
																													
																							| 3 | 伍佳莉, 李东伦, 唐泳, 等. 人工智能辅助医学影像识别技术的应用研究进展. 现代医药卫生, 2022, 38 (4): 603- 607.  URL
 | 
																													
																							|  | WU J L, LI D L, TANG Y, et al. Research progress on the application of artificial intelligence aided medical image recognition technology. Journal of Modern Medicine & Health, 2022, 38 (4): 603- 607.  URL
 | 
																													
																							| 4 | 刘文, 亓文霞, 仲国强, 等. 基于Concat-UNet的食管癌肿瘤医学影像分割研究. 计算机工程, 2022, 48 (12): 312- 320.  URL
 | 
																													
																							|  | LIU W, QI W X, ZHONG G Q, et al. Research on medical image segmentation for esophageal cancer tumors based on concat-UNet. Computer Engineering, 2022, 48 (12): 312- 320.  URL
 | 
																													
																							| 5 | 潘成成. 基于区域卷积神经网络的医学图像识别研究[D]. 贵阳: 贵州大学, 2020. | 
																													
																							|  | PAN C C. Medical image recognition based on regional convolution neural network[D]. Guiyang: Guizhou University, 2020. (in Chinese) | 
																													
																							| 6 | KIM B, YE J C. Diffusion deformable model for 4D temporal medical image generation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2022: 539-548. | 
																													
																							| 7 | 张相芬, 刘艳, 袁非牛. 基于倒金字塔深度学习网络的三维医学图像分割. 计算机工程, 2022, 48 (12): 304- 311.  URL
 | 
																													
																							|  | ZHANG X F, LIU Y, YUAN F N. 3D medical image segmentation based on inverted pyramid deep learning ne twork. Computer Engineering, 2022, 48 (12): 304- 311.  URL
 | 
																													
																							| 8 | KOLARIK M, BURGET R, RIHA K, et al. Suitability of CT and MRI imaging for automatic spine segmentation using deep learning[C]//Proceedings of the 44th International Conference on Telecommunications and Signal Processing. Washington D. C., USA: IEEE Press, 2021: 263-272. | 
																													
																							| 9 | LI H Y, WANG Z X, SHEN W, et al. SSCK-Net: spine segmentation in MRI based on cross attention and key-points recognition-assisted learner. Biomedical Signal Processing and Control, 2023, 86, 105278.  doi: 10.1016/j.bspc.2023.105278
 | 
																													
																							| 10 | HAN Z, WEI B, MERCADO A, et al. Spine-GAN: semantic segmentation of multiple spinal structures. Medical Image Analysis, 2018, 50, 23- 35.  doi: 10.1016/j.media.2018.08.005
 | 
																													
																							| 11 | PANG S M, PANG C L, SU Z H, et al. DGMSNet: spine segmentation for MR image by a detection-guided mixed-supervised segmentation network. Medical Image Analysis, 2022, 75, 102261.  doi: 10.1016/j.media.2021.102261
 | 
																													
																							| 12 | 张辰翰. 基于深度学习的脊柱CT图像分割[D]. 成都: 电子科技大学, 2021. | 
																													
																							|  | ZHANG C H. Research on CT image segmentation of spine based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese) | 
																													
																							| 13 | 汤鹏. 基于SU-SWA与深度集成模型的皮肤病变分割与分类算法[D]. 长沙: 湖南大学, 2020. | 
																													
																							|  | TANG P. Skin lesion segmentation and classification algorithm based on SU-SWA and deep ensemble model[D]. Changsha: Hunan University, 2020. (in Chinese) | 
																													
																							| 14 | 邹承明, 赵宁. 数据异质场景下的联邦学习模型校正与聚合. 电子测量技术, 2022, 45 (20): 102- 109.  URL
 | 
																													
																							|  | ZOU C M, ZHAO N. Model correction and aggregation in statistically heterogeneous federated learning. Electronic Measurement Technology, 2022, 45 (20): 102- 109.  URL
 | 
																													
																							| 15 | 黄华. 异质性数据的联邦学习关键技术研究[D]. 西安: 西安电子科技大学, 2022. | 
																													
																							|  | HUANG H. Research on key technologies of federated learning for heterogeneous data[D]. Xi'an: Xidian University, 2022. (in Chinese) | 
																													
																							| 16 | MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-07-20]. https://arxiv.org/abs/1602.05629 . | 
																													
																							| 17 | ZHANG M, QU L Q, SINGH P, et al. SplitAVG: a heterogeneity-aware federated deep learning method for medical imaging. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (9): 4635- 4644.  doi: 10.1109/JBHI.2022.3185956
 | 
																													
																							| 18 | LI X X, GU Y F, DVORNEK N, et al. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: abide results. Medical Image Analysis, 2020, 65, 101765.  doi: 10.1016/j.media.2020.101765
 | 
																													
																							| 19 | 林子谦, 樊重俊, 王琪. 一种Unet图像分割模型的联邦蒸馏优化算法. 小型微型计算机系统, 2023, 44 (7): 1535- 1541.  URL
 | 
																													
																							|  | LIN Z Q, FAN C J, WANG Q. Federal distillation optimization algorithm for unet image segmentation model. Journal of Chinese Computer Systems, 2023, 44 (7): 1535- 1541.  URL
 | 
																													
																							| 20 | 邱越, 李秋秋, 王瑛, 等. 深度学习技术在医学图像分割中的应用. 电脑知识与技术, 2022, 18 (10): 74- 75.  URL
 | 
																													
																							|  | QIU Y, LI Q Q, WANG Y, et al. Application of deep learning technology in medical image segmentation. Computer Knowledge and Technology, 2022, 18 (10): 74- 75.  URL
 | 
																													
																							| 21 | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL]. [2023-07-20]. https://arxiv.org/pdf/1703.01780 . | 
																													
																							| 22 | VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 257-265. | 
																													
																							| 23 | CHEN X K, YUAN Y H, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2613-2622. | 
																													
																							| 24 | VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning. Neural Networks, 2022, 145, 90- 106. | 
																													
																							| 25 | LUO X D, LIAO W J, CHEN J N, et al. Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 318-329. | 
																													
																							| 26 | QIU L, CHENG J R, GAO H X, et al. Federated semi-supervised learning for medical image segmentation via pseudo-label denoising. IEEE Journal of Biomedical and Health Informatics, 2023, 27 (10): 4672- 4683. | 
																													
																							| 27 | LIU Q D, YANG H Z, DOU Q, et al. Federated semi-supervised medical image classification via inter-client relation matching[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 325-335. | 
																													
																							| 28 |  | 
																													
																							| 29 | LIU Z D, YANG X, GAO R, et al. Remove appearance shift for ultrasound image segmentation via fast and universal style transfer[C]//Proceedings of the 17th IEEE International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2020: 357-367. | 
																													
																							| 30 | MASOOD R F, HASSAN T, RAJA H, et al. A composite dataset of lumbar spine images with mid-sagittal view annotations and clinically significant spinal measurements[C]//Proceedings of the 2nd International Conference on Digital Futures and Transformative Technologies. Washington D. C., USA: IEEE Press, 2022: 125-134. | 
																													
																							| 31 | CARDENAS C E, MCCARROLL R E, COURT L E, et al. Deep learning algorithm for auto-delineation of high-risk oropharyngeal clinical target volumes with built-in dice similarity coefficient parameter optimization function. International Journal of Radiation Oncology Biology Physics, 2018, 101 (2): 468- 478. | 
																													
																							| 32 | ZHAO S D, HAO G Z, ZHANG Y C, et al. A real-time semantic segmentation method of sheep carcass images based on ICNet. Journal of Robotics, 2021, 2021, 8847984. |