1 |
李珑, 刘凯, 李玲. 基于目标检测的时空上下文跟踪算法. 计算机工程, 2018, 44 (9): 263-268, 273.
URL
|
|
LI L , LIU K , LI L . Spatial-temporal context tracking algorithm based on target detection. Computer Engineering, 2018, 44 (9): 263-268, 273.
URL
|
2 |
王春雷, 张建林, 李美惠, 等. 结合卷积Transformer的目标跟踪算法. 计算机工程, 2023, 49 (4): 281-288, 296.
URL
|
|
WANG C L , ZHANG J L , LI M H , et al. Object tracking algorithmcombining convolution and Transformer. Computer Engineering, 2023, 49 (4): 281-288, 296.
URL
|
3 |
任立成, 杨嘉棋, 魏宇星, 等. 基于特征融合与双模板嵌套更新的孪生网络跟踪算法. 计算机工程, 2021, 47 (7): 239- 248.
URL
|
|
REN L C , YANG J Q , WEI Y X , et al. Tracking algorithm using Siamese network based on feature fusion and dual-template nested update. Computer Engineering, 2021, 47 (7): 239- 248.
URL
|
4 |
FAN H , BAI H X , LIN L T , et al. LaSOT: a high-quality large-scale single object tracking benchmark. International Journal of Computer Vision, 2021, 129 (2): 439- 461.
doi: 10.1007/s11263-020-01387-y
|
5 |
MÜLLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 310-327.
|
6 |
HUANG L H , ZHAO X , HUANG K Q . GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1562- 1577.
doi: 10.1109/TPAMI.2019.2957464
|
7 |
ALAWODE B, DHAREJO F A, UMMAR M, et al. Improving underwater visual tracking with a large scale dataset and image enhancement[EB/OL]. [2024-03-11]. http://arxiv.org/abs/2308.15816.
|
8 |
ALAWODE B, GUO Y H, UMMAR M, et al. UTB180: a high-quality benchmark for underwater tracking[C]//Proceedings of Asian Conference on Computer Vision. Berlin, Germany: Springer, 2023: 442-458.
|
9 |
PANETTA K , KEZEBOU L , OLUDARE V , et al. Comprehensive underwater object tracking benchmark dataset and underwater image enhancement with GAN. IEEE Journal of Oceanic Engineering, 2022, 47 (1): 59- 75.
doi: 10.1109/JOE.2021.3086907
|
10 |
CAI L , MCGUIRE N E , HANLON R , et al. Semi-supervised visual tracking of marine animals using autonomous underwater vehicles. International Journal of Computer Vision, 2023, 131 (6): 1406- 1427.
doi: 10.1007/s11263-023-01762-5
|
11 |
GONZÁLEZ-SABBAGH S P , ROBLES-KELLY A . A survey on underwatercomputer vision. ACM Computing Surveys, 2023, 55 (13): 1- 39.
|
12 |
AKKAYNAK D, TREIBITZ T. Sea-Thru: a method for removing water from underwater images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 1682-1691.
|
13 |
MANDAL A, PRAKASH M, BRINDHA T V, et al. Computer vision and deep learning for fish classification in underwater habitats[C]//Proceedings of the International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT). Washington D.C., USA: IEEE Press, 2023: 1-7.
|
14 |
TIAN C W , XIAO J Y , ZHANG B , et al. A self-supervised network for image denoising and watermark removal. Neural Networks, 2024, 174, 106218.
doi: 10.1016/j.neunet.2024.106218
|
15 |
TIAN C W , YUAN Y X , ZHANG S C , et al. Image super-resolution with an enhanced group convolutional neural network. Neural Networks, 2022, 153, 373- 385.
doi: 10.1016/j.neunet.2022.06.009
|
16 |
SETIAWAN A W, MENGKO T R, SANTOSO O S, et al. Color retinal image enhancement using CLAHE[C]//Proceedings of the International Conference on ICT for Smart Society. Washington D.C., USA: IEEE Press, 2013: 1-7.
|
17 |
LIU Y C , CHAN W H , CHEN Y Q . Automatic white balance for digital still camera. IEEE Transactions on Consumer Electronics, 1995, 41 (3): 460- 466.
doi: 10.1109/30.468045
|
18 |
GALDRAN A , PARDO D , PICÓN A , et al. Automatic red-channel underwater image restoration. Journal of Visual Communication and Image Representation, 2015, 26, 132- 145.
doi: 10.1016/j.jvcir.2014.11.006
|
19 |
PENG Y T , COSMAN P C . Underwater image restoration based on image blurriness and light absorption. IEEE Transactions on Image Processing, 2017, 26 (4): 1579- 1594.
doi: 10.1109/TIP.2017.2663846
|
20 |
PENG Y T , CAO K M , COSMAN P C . Generalization of the dark channel prior for single image restoration. IEEE Transactions on Image Processing, 2018, 27 (6): 2856- 2868.
doi: 10.1109/TIP.2018.2813092
|
21 |
LI J , SKINNER K A , EUSTICE R M , et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robotics and Automation Letters, 2018, 3 (1): 387- 394.
|
22 |
LI C Y , GUO J C , GUO C L . Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Processing Letters, 2018, 25 (3): 323- 327.
doi: 10.1109/LSP.2018.2792050
|
23 |
LI C Y , GUO C L , REN W Q , et al. An underwater image enhancement benchmark dataset and beyond. IEEE Transactions on Image Processing, 2019, 29, 4376- 4389.
|
24 |
JAMADANDI A, MUDENAGUDI U. Exemplar-based underwater image enhancement augmented by wavelet corrected Transforms[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2019: 11-17.
|
25 |
LI C Y , ANWAR S , HOU J H , et al. Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Transactions on Image Processing, 2021, 30, 4985- 5000.
doi: 10.1109/TIP.2021.3076367
|
26 |
WANG H , SUN S X , BAI X , et al. A reinforcement learning paradigm of configuring visual enhancement for object detection in underwater scenes. IEEE Journal of Oceanic Engineering, 2023, 48 (2): 443- 461.
doi: 10.1109/JOE.2022.3226202
|
27 |
SUN S X , WANG H , ZHANG H , et al. Underwater image enhancement with reinforcement learning. IEEE Journal of Oceanic Engineering, 2024, 49 (1): 249- 261.
doi: 10.1109/JOE.2022.3152519
|
28 |
TIAN C W , ZHENG M H , ZUO W M , et al. A cross Transformer for image denoising. Information Fusion, 2024, 102, 102043.
doi: 10.1016/j.inffus.2023.102043
|
29 |
YAN B, PENG H W, FU J L, et al. Learning spatio-temporal Transformer for visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 10428-10437.
|
30 |
WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 1571-1580.
|
31 |
SONG Z K, YU J Q, CHEN Y P, et al. Transformer tracking with cyclic shifting window attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 8781-8790.
|
32 |
CUI Y T, JIANG C, WANG L M, et al. MixFormer: end-to-end tracking with iterative mixed attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 13598-13608.
|
33 |
ZHAO H J, WANG D, LU H C. Representation learning for visual object tracking by masked appearance transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 18696-18705.
|
34 |
CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 8122-8131.
|
35 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 12993-13000.
|
36 |
|
37 |
FU Z H, LIU Q J, FU Z H, et al. STMTrack: template-free visual tracking with space-time memory networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 13769-13778.
|
38 |
CHEN B Y, LI P X, BAI L, et al. Backbone is all your need: a simplified architecture for visual object tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 375-392.
|
39 |
ZHANG Z P, LIU Y H, WANG X, et al. Learn to match: automatic matching network design for visual tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 13319-13328.
|
40 |
BHAT G, LAWIN F J, DANELLJAN M, et al. Learning what to learn for video object segmentation[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 777-794.
|
41 |
TANG F, LING Q. Ranking-based Siamese visual tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 8731-8740.
|