[1] W. YUE, C. Xiaoliang, J. Zhongyuan. Survey on
Predicting Popularity of Information in Microblogs. 吴越,
陈晓亮, 蒋忠远. 微博信息流行度预测研究综述[J]. 西
华大学学报(自然科学版), 2017(1).
[2] B. Erçahin, Ö. Aktaş, D. Kilinç, et al. Twitter fake account
detection[C]// Proc of the 2nd International Conference on
Computer Science and Engineering. Piscataway, NJ: IEEE
Press, 2017: 388–392.
[3] RAYMOND Y K, STEPHEN L, LIAO S Y. Text mining
and probabilistic language modeling for online review
spam detection[J]. ACM Transactions on Management
Information Systems, Volume 2, 2011, 2(4): 25:1-25:30.
[4] ZHANG X, ZHU S, LIANG W. Detecting spam and
promoting campaigns in the Twitter social network[C]//Proc of the 12th IEEE International Conference on Data
Mining. Brussels, ICDM 2012: 1194-1199.
[5] Neil Z Gong, Mario F, Prateek M. Sybil Belief: A
Semi-Supervised Learning Approach for Structure-Based
Sybil Detection[J]. IEEE Transactions on Information
Forensics and Security, Volume 9(6), 2014: 976-987.
[6] N. Tran, J. Li, L. Subramanian, and S. S. Chow. Optimal
sybil-resilient node admission control[J]. INFOCOM, 2011
Proceedings IEEE, 2011, pp. 3218–3226.
[7] J. Jia, B. Wang, et al. Random walk based fake account
detection in online social networks[C]// Proc of the
Dependable Systems and Networks. DSN 2017: 273–284.
[8] B. Wang, L. Zhang, and N. Z. Gong. Sybil scar: Sybil
detection in online social networks via local rule based
propagation[J]. INFOCOM 2017-IEEE Conference on
Computer Communications, 2017, pp. 1–9.
[9] Z. Yang, C. Wilson, X. Wang, et al. Uncovering social
network sybils in the wild[J]// Proc of the ACM
Transactions on Knowledge Discovery from Data (TKDD),
Volume 9(1), 2014: 2:1-2:29.
[10] V. Sridharan, V. Shankar, and M. Gupta. Twitter games:
How successful spammers pick targets[C]// Proc of the
28th Annual Computer Security Applications Conference.
ACM, 2012: 389–398.
[11] Y. Boshmaf, I. Muslukhov, K. Beznosov, et al. The social
bot network: when bots socialize for fame and money[C]//
Proc of the 27th annual computer security applications
conference. ACM, 2011, pp. 93–102.
[12] D. Koll, M. Schwarzmaier , et al. Thank you for being a
friend: An attacker view on online-social-network-based
sybil defenses[C]// Proc of the 37th IEEE International
Conference on Distributed Computing Systems Workshops.
ICDCS Workshops, 2017: 157-162
[13] S. Effendy and R. H. Yap. The strong link graph for
enhancing sybil defenses[C]// Prof the 37th IEEE
International Conference on Distributed Computing
Systems. ICDCS 2017: 944-954.
[14] Zhang X, Xie H, Lui J C S. Sybil Detection in
Social-Activity Networks: Modeling, Algorithms and
Evaluations[C]// Prof of the 26th IEEE International
Conference on Network Protocols. ICNP 2018: 44-54.
[15] Stefano C, Roberto D, et al. Social Fingerprinting:
Detection of Spambot Groups Through DNA-Inspired
Behavioral Modeling[J].IEEE Transactions on Dependable
and Secure Computing, Volume 15(4), 2018: 561-576.
[16] M. Mateen, M. A. Iqbal, M. Aleem, and M. A. Islam. A
hybrid approach for spam detection for Twitter[C]// Proc
of the 14th Int. Bhurban Conf. Appl. Sci. Technol.
(IBCAST), Jan. 2017, pp. 466–471.
[17] Chaozhuo L, Senzhang W, Lifang H, et.al. SSDMV:
Semi-supervised Deep Social Spammer Detection by
Multi-View Data Fusion[C]// Prof of the 18th IEEE
International Conference on Data Mining. Singapore:
ICDM, 2018: 247-256.
[18] Liu Y , Wu B, et al. SDHM: A hybrid model for spammer
detection in Weibo[C]// Proc of the 2014 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining (ASONAM). ACM, 2014.
[19] Grover A, Leskovec J. node2vec: Scalable Feature
Learning for Networks[C]// Proc of the 2016 Acm Sigkdd
International Conference on Knowledge Discovery & Data
Mining. 2016.
[20] Lee, Kyumin, Brian David Eoff, James Caverlee. Seven
Months with the Devils: A Long-Term Study of Content
Polluters on Twitter[C]// Prof of the 5th International
AAAI Conference on Weblogs and Social Media
(ICWSM), Barcelona, July 2011.
[21] Yang, Kai-Cheng, Onur Varol, et.al. Scalable and
Generalizable Social Bot Detection through Data
Selection[C]// Prof of the Thirty-Fourth AAAI Conference
on Artificial Intelligence. AAAI press: 2020: 1096-1103.
[22] Cresci, S., Di Pietro, R., Petrocchi, et.al. Fame for sale:
efficient detection of fake Twitter followers[J]. Decision
Support Systems, Volume 80,2015: 56-71.
|