[1] 吴越, 陈晓亮, 蒋忠远.微博信息流行度预测研究综述[J].西华大学学报(自然科学版), 2017(1):1-6. WU Y, CHEN X L, JIANG Z Y.Survey on predicting popularity of information in microblogs[J].Journal of Xihua University(Natural Science Edition), 2017(1):1-6.(in Chinese) [2] ERÇAHIN B, AKTAŞ Ö, KILINÇ D, et al.Twitter fake account detection[C]//Proceedings of the 2nd International Conference on Computer Science and Engineering.Washington D.C., USA:IEEE Press, 2017:388-392. [3] RAYMOND Y K, STEPHEN L, LIAO S Y.Text mining and probabilistic language modeling for online review spam detection[J].ACM Transactions on Management Information Systems, 2011, 2(4):25-30. [4] ZHANG X, ZHU S, LIANG W.Detecting spam and promoting campaigns in the twitter social network[C]//Proceedings of the 12th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2012:1194-1199. [5] NEIL Z G, MARIO F, PRATEEK M.Sybil belief:a semi-supervised learning approach for structure-based sybil detection[J].IEEE Transactions on Information Forensics and Security, 2014, 9(6):976-987. [6] JIA J Y, WANG B H, GONG N Z Q.Random walk based fake account detection in online social networks[C]//Proceedings of the 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.Washington D.C., USA:IEEE Press, 2017:273-284. [7] WANG B, ZHANG L, GONG N Z.Sybilscar:Sybil detection in online social networks via local rule based propagation[C]//Proceedings of 2017 IEEE Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2017:1-9. [8] YANG Z, WILSON C, WANG X, et al.Uncovering social network sybils in the wild[J].ACM Transactions on Knowledge Discovery from Data, 2014, 8(1):1-29. [9] SRIDHARAN V, SHANKAR V, GUPTA M.Twitter games:How successful spammers pick targets[C]//Proceedings of the 28th Annual Computer Security Applications Conference.New York, USA:ACM Press, 2012:389-398. [10] BOSHMAF Y, MUSLUKHOV I, BEZNOSOV K, et al.The social bot network:when bots socialize for fame and money[C]//Proceedings of the 27th Annual Computer Security Applications Conference.New York, USA:ACM Press, 2011:93-102. [11] KOLL D, SCHWARZMAIER M, LI J, et al.Thank you for being a friend:an attacker view on online-social-network-based sybil defenses[C]//Proceedings of the 37th IEEE International Conference on Distributed Computing Systems Workshops.Washington D.C., USA:IEEE Press, 2017:157-162. [12] EFFENDY S, YAP R H.The strong link graph for enhancing sybil defenses[C]//Proceedings of the 37th IEEE International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2017:944-954. [13] ZHANG X, XIE H, LUI J C.Sybil detection in social-activity networks:modeling, algorithms and evaluations[C]//Proceedings of the 26th IEEE International Conference on Network Protocols.Washington D.C., USA:IEEE Press, 2018:44-54. [14] STEFANO C, ROBERTO D, MARINELLA P, et al.Social fingerprinting:detection of spambot groups through DNA-inspired behavioral modeling[J].IEEE Transactions on Dependable and Secure Computing, 2018, 15(4):561-576. [15] MATEEN M, IQBAL M A, ALEEM M, et al.A hybrid approach for spam detection for Twitter[C]//Proceedings of the 14th International Bhurban Conference on Applied Sciences and Technology.Washington D.C., USA:IEEE Press, 2017:466-471. [16] CHAOZHUO L, SENZHANG W, LIFANG H, et.al.SSDMV:semi-supervised deep social spammer detection by multi-view data fusion[C]//Proceedings of the 18th IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2018:247-256. [17] LIU Y, WU B, WANG B, et al.SDHM:a hybrid model for spammer detection in Weibo[C]//Proceedings of 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.New York, USA:ACM Press, 2014:942-947. [18] GROVER A, LESKOVEC J.Node2vec:scalable feature learning for networks[C]//Proceedings of 2016 ACM Sigkdd International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2016:855-864. [19] KYUMIN L, EOFF B D, CAVERLEE J.Seven months with the devils:a long-term study of content polluters on Twitter[EB/OL].[2020-09-01].https://www.researchgate.net/publication/221297999_Seven_Months_with_the_Devils_A_Long-Term_Study_of_Content_Polluters_on_Twitter. [20] YANG K C, VAROL O, HUI P M, et.al.Scalable and generalizable social bot detection through data selection[EB/OL].[2020-09-01].https://arxiv.org/abs/1911.09179. [21] CRESCI S, PIETRO D R, PETROCCHI M, et.al.Fame for sale:efficient detection of fake Twitter followers[J].Decision Support Systems, 2015(80):56-71. |